Nuclei can be described satisfactorily in a nonlinear chiral SU(3)-framework, even with standard potentials of the linear $\sigma$-model. The condensate value of the strange scalar meson is found to be important for the properties of nuclei even without adding hyperons. By neglecting terms which couple the strange to the nonstrange condensate one can reduce the model to a Walecka model structure embedded in SU(3). We discuss inherent problems with chiral SU(3) models regarding hyperon optical potentials.Comment: 25 pages, RevTe
A generalized Lagrangian for the description of hadronic matter based on the linear SU (3)L × SU (3)R σ-model is proposed. Besides the baryon octet, the spin-0 and spin-1 nonets, a gluon condensate associated with broken scale invariance is incorporated. The observed values for the vacuum masses of the baryons and mesons are reproduced. In mean-field approximation, vector and scalar interactions yield a saturating nuclear equation of state. We discuss the difficulties and possibilities to construct a chiral invariant baryon-meson interaction that leads to a realistic equation of state. It is found that a coupling of the strange condensate to nucleons is needed to describe the hyperon potentials correctly. The effective baryon masses and the appearance of an abnormal phase of nearly massless nucleons at high densities are examined. A nonlinear realization of chiral symmetry is considered, to retain a Yukawa-type baryon-meson interaction and to establish a connection to the Walecka-model.
We investigate the properties of different modifications to the linear σ-model (including a dilaton field associated with broken scale invariance) at finite baryon density ρ and nonzero temperature T . The explicit breaking of chiral symmetry and the way the vector meson mass is generated are significant for the appearance of a phase of nearly vanishing nucleon mass besides the solution describing normal nuclear matter. The elimination of the abnormal solution prohibits the onset of a chiral phase transition but allows to lower the compressibility to a reasonable range. The repulsive contributions from the vector mesons are responsible for the wide range of stability of the normal phase in the (µ, T )-plane. The abnormal solution becomes not only energetically preferable to the normal state at high temperature or density, but also mechanically stable due to the inclusion of dilatons.
A new chiral SU(3) Lagrangian is proposed to describe the properties of kaons and antikaons in the nuclear medium, the ground state of dense matter and the kaon-nuclear interactions consistently. The saturation properties of nuclear matter are reproduced as well as the results of the DiracBrückner theory. After taking into account the coupling between the omega meson and the kaon, we obtain similar results for the effective kaon and antikaon energies as calculated in the one-boson-exchange model while in our model the parameters of the kaon-nuclear interactions are constrained by the SU(3) chiral symmetry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.