Photoluminescence lifetimes and optical absorption cross sections of Si nanocrystals embedded in SiO2 have been studied as a function of their average size and emission energy. The lifetimes span from 20 μs for the smallest sizes (2.5 nm) to more than 200 μs for the largest ones (7 nm). The passivation of nonradiative interface states by hydrogenation increases the lifetime for a given size. In contrast with porous Si, the cross section per nanocrystal shows a nonmonotonic behavior with emission energy. In fact, although the density of states above the gap increases for larger nanocrystals, this trend is compensated by a stronger reduction of the oscillator strength, providing an overall reduction of the absorption cross section per nanocrystal for increasing size.
This paper investigates the interaction between Si nanoclusters ͑Si-nc͒ and Er in SiO 2 , reports on the optical characterization and modeling of this system, and attempts to clarify its effectiveness as a gain material for optical waveguide amplifiers at 1.54 m. Silicon-rich silicon oxide layers with an Er content of 4 -6 ϫ 10 20 at./ cm 3 were deposited by reactive magnetron sputtering. The films with Si excess of 6 -7 at. %, and postannealed at 900°C showed the best Er 3+ photoluminescence ͑PL͒ intensity and lifetime, and were used for the study. The annealing duration was varied up to 60 min to engineer the size and density of Si-nc and optimize Si-nc and Er coupling. PL investigations under resonant ͑488 nm͒ and nonresonant ͑476 nm͒ pumping show that an Er effective excitation cross section is similar to that of Si-nc ͑ϳ10 −17 -10 −16 cm 2 ͒ at low pumping flux ͑ϳ1016 -10 17 cm −2 s −1 ͒, while it drops at high flux ͑Ͼ10 18 cm −2 s −1 ͒. We found a maximum fraction of excited Er of about 2% of the total Er content. This is far from the 50% needed for optical transparency and achievement of population inversion and gain. Detrimental phenomena that cause depletion of Er inversion, such as cooperative up conversion, excited-stated absorption, and Auger deexcitations are modeled, and their impact in lowering the amount of excitable Er is found to be relatively small. Instead, Auger-type short-range energy transfer from Si-nc to Er is found, with a characteristic interaction length of 0.4 nm. Based on such results, numerical and analytical ͑Er as a quasi-two-level system͒ coupled rate equations have been developed to determine the optimum conditions for Er inversion. The modeling predicts that interaction is quenched for high photon flux and that only a small fraction of Er ͑0.2-2 %͒ is excitable through Si-nc. Hence, the low density of sensitizers ͑Si-nc͒ and the short range of the interaction are the explanation of the low fraction of Er coupled. Efficient ways to improve Er-doped Si-nc thin films for the realization of practical optical amplifiers are also discussed.
Influence of average size and interface passivation on the spectral emission of Si nanocrystals embedded in SiO 2
Precipitation and crystallization of Si nanocrystals have been monitored by means of Raman spectroscopy. SiOx films with different compositions have been deposited by low-pressure chemical-vapor deposition technique onto silica substrates and treated to temperatures exceeding 800 °C. The evolution of the Raman signal with the thermal budget reveals that the silicon transition from amorphous to crystalline state shifts to higher temperatures as the Si content in the layers is lowered. A rather complete crystallization of the nanoparticles is achieved after annealing at 1250 °C for a Si excess lower than 20%, while for higher excesses the crystalline fraction reaches only 40%, suggesting the formation of a crystalline core surrounded by an amorphous shell. The Raman spectra have been analyzed by a phonon confinement model that takes into account stress effects. An increasing nanocrystal size, from 2.5 to 3.4 nm, has been estimated when the Si excess varies from 16 to 29 at. %. For small Si nanocrystals a strong hydrostatic stress has been observed, induced by a very abrupt transition with the surrounding SiO2. Its magnitude correlates with the increase in thermal budget required for the crystallization of the amorphous clusters. This study underlines the fundamental role of hydrostatic stress in retarding the crystallization of Si nanoclusters.
Silicon samples of n-type have been implanted at room temperature with 5.6-MeV 28 Si ions to a dose of 2ϫ10 8 cm Ϫ2 and then annealed at temperatures from 100 to 380°C. Both isothermal and isochronal treatments were performed and the annealing kinetics of the prominent divacancy (V 2 ) and vacancy-oxygen ͑VO͒ centers were studied in detail using deep-level transient spectroscopy. The decrease of V 2 centers exhibits first-order kinetics in both Czochralski-grown ͑CZ͒ and float-zone ͑FZ͒ samples, and the data provide strong evidence for a process involving migration of V 2 and subsequent annihilation at trapping centers. The migration energy extracted for V 2 is ϳ1.3 eV and from the shape of the concentration versus depth profiles, an effective diffusion length р0.1 m is obtained. The VO center displays a more complex annealing behavior where interaction with mobile hydrogen ͑H͒ plays a key role through the formation of VOH and VOH 2 centers. Another contribution is migration of VO and trapping by interstitial oxygen atoms in the silicon lattice, giving rise to vacancy-dioxygen pairs. An activation energy of ϳ1.8 eV is deduced for the migration of VO, in close resemblance with results from previous studies using electron-irradiated samples. A model for the annealing of VO, involving only three reactions, is put forward and shown to yield a close quantitative agreement with the experimental data for both CZ and FZ samples over the whole temperature range studied.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.