We present diameter distribution models for black alder (Alnus glutinosa (L.) Gaertn.) derived from diameter measurements made at breast height in 844 circular sample plots set in 163 managed stands located in south-eastern Poland. A total of 22,530 trees were measured. Stand age ranged from six to 89 years. The model formulation was based on the two-parameter Weibull function and a non-parametric percentile-based method. Weibull function parameters were recovered from the first raw and second central moments estimated using the stand quadratic mean diameter. The same stand characteristic was used to predict values of 12 percentiles in the percentile-based method. The model performance was assessed using the k-fold cross-validation method. The goodness-of-fit statistics include the Kolmogorov–Smirnov statistic, mean error, root mean squared error, and two variants of the error index introduced by Reynolds. The percentile model developed, accurately predicted diameter distributions in 88.4% of black alder stands, as compared to 81.9% for the Weibull model (Kolmogorov–Smirnov test). Alternative statistical metrics assessing goodness-of-fit to empirical distributions suggested that the non-parametric percentile model was superior to the parametric Weibull model, especially in stands older than 20 years. In younger stands, the two models were accurate only in 57% of the cases, and did not differ significantly with respect to goodness-of-fit measures.
We compare the usefulness of nonparametric and parametric methods of diameter distribution modeling. The nonparametric method was represented by the new tool—kernel estimator of cumulative distribution function with bandwidths of 1 cm (KE1), 2 cm (KE2), and bandwidth obtained automatically (KEA). Johnson SB (JSB) function was used for the parametric method. The data set consisted of 7867 measurements made at breast height in 360 sample plots established in 36 managed black alder (Alnus glutinosa (L.) Gaertn.) stands located in southeastern Poland. The model performance was assessed using leave-one-plot-out cross-validation and goodness-of-fit measures: mean error, root mean squared error, Kolmogorov–Smirnov, and Anderson–Darling statistics. The model based on KE1 revealed a good fit to diameters forming training sets. A poor fit was observed for KEA. Frequency of diameters forming test sets were properly fitted by KEA and poorly by KE1. KEA develops more general models that can be used for the approximation of independent data sets. Models based on KE1 adequately fit local irregularities in diameter frequency, which may be considered as an advantageous in some situations and as a drawback in other conditions due to the risk of model overfitting. The application of the JSB function to training sets resulted in the worst fit among the developed models. The performance of the parametric method used to test sets varied depending on the criterion used. Similar to KEA, the JSB function gives more general models that emphasize the rough shape of the approximated distribution. Site type and stand age do not affect the fit of nonparametric models. The JSB function show slightly better fit in older stands. The differences between the average values of Kolmogorov–Smirnov (KS), Anderson–Darling (AD), and root mean squared error (RMSE) statistics calculated for models developed with test sets were statistically nonsignificant, which indicates the similar usefulness of the investigated methods for modeling diameter distribution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.