Abstract.The introduction of self-healing functionality into epoxy matrix is an important and challenging topic. Various micro/nano containers loaded self-healing agents are developed and incorporated into epoxy matrix to impart self-healing ability. The current report reviews the major findings in the area of self-healing epoxy composites and coatings with special emphasis on these containers. The preparation and use of polymer micro/nano capsules, polymer fibers, hollow glass fibers/bubbles, inorganic nanotubes, inorganic meso-and nano-porous materials, carbon nanotubes etc. as self-healing containers are outlined. The nature of the container and its response to the external stimulations greatly influence the self-healing performance. The self-healing mechanism associated with each type of container and the role of container parameters on self-healing performance of self-healing epoxy systems are reviewed. Comparison of the efficiency offered by different types of containers is introduced. Finally, the selection of containers to develop cost effective and green self-healing systems are mentioned.
The effects of nano clay, carboxyl-terminated (butadiene-co-acrylonitrile) (CTBN) liquid rubber and the combination of both on the cure kinetics of diglycidyl ether of bisphenol-A (DGEBA)-based epoxy resin/nadic methyl anhydride were studied. Cure kinetics studies were carried out by performing dynamic and isothermal differential scanning calorimetric (DSC) experiments. The dynamic DSC experiments were carried out at four different heating rates. Dynamic kinetic modeling was performed using Kissinger and Ozawa approaches. Since these methods are based exclusively on the maximum rate of cure, which occurs approximately at the beginning of the cure reaction, the activation energy calculated using these methods is valid only for the initial stage of the cure. The clay (3 phr) filled epoxy system has an activation energy 24 % lower than the unfilled system. The role of the surfactant chemistry on the initial stage of the cure reaction was also studied. A plausible reaction mechanism which involves the effect of the nanoclay surfactant as an accelerator of the cure reaction was proposed. The phase separated CTBN rubber hindered the cure reaction and has 3 % higher activation energy for epoxy/CTBN system than the unfilled system. In the ternary epoxy/3 phr clay/15 phr CTBN system, the accelerating effect of clay on cure was highlighted. The cure activation observed in the presence of clay overshadows the hindrance created by the phase separated CTBN. Isothermal DSC scans were carried out at five different temperatures. The experimental datas showed an autocatalytic behavior of the reaction, and the isothermal modeling was carried out by Kamal autocatalytic model. The results showed a very good agreement within the whole conversion range for the unfilled and all the filled systems. The evolution of the morphology and phase separation was also studied using optical and scanning electron microscope. Faster cure reaction resulted in smaller phase-separated CTBN particles in epoxy/clay/CTBN ternary system as compared with those observed in epoxy/ CTBN binary blend.
Biowaste chicken eggshell (ES) powder was applied as a potential cure modifier in epoxy/anhydride systems. Cure behaviour and kinetics of composites filled with very low content (0.1 wt% based on epoxy resin) of ES, calcium carbonate (CaCO 3 ), and terpolymer-modified fillers, mES and mCaCO 3 , were discussed comparatively. Surface analysis was performed by X-ray photoelectron spectroscopy. Cure kinetics was investigated by differential (Friedman) and integral (Ozawa and Kissinger-Akahira-Sunose) isoconversional methods using dynamic differential scanning calorimetry (DSC) data. Overall, protein precursors naturally existing in the structure of pristine ES facilitated crosslinking of epoxy and hardener of anhydride with functional groups resulting from terpolymer attachment to CaCO 3 particles. Accelerated/hindered cure was observed depending on the filler type and surface characteristics, as investigated via the autocatalytic/non-catalytic nature of reactions and comparison of activation energy values of four types of composites. An enhanced cure was identified for composites containing untreated ES, which could be inferred on account of the lower competitive cure of carboxyl groups in the terpolymer backbone with epoxy compared to peptide groups existing in microporous pristine ES.On the other hand, mCaCO 3 revealed low values of activation energy compared to pristine CaCO 3 , but still of the same order as ground biowaste ES.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.