Previously we have presented evidence of large-scale latitudinal clines in the frequencies of four chromosome inversions and alleles at six enzyme loci in populations of D. melanogaster in Australasia, Asia and North America. Subsequent sampling by others in Japan and western U.S.A. has failed to repeat this observation for the steepest of the clines (alcohol dehydrogenase and the four chromosome inversions). We argue that this failure reflects the few populations and small latitudinal range sampled in these later studies. From extensive sampling over a long latitudinal transect in Australasia we here document Adh and inversion clines which are virtually identical to those originally obtained in different Australian populations four years earlier. We also repeat our observation that the Adh cline is largely independent of the cline in the linked inversion In(2L)t. We therefore retain our original conclusion that these polymorphisms are subject to natural selection. However the new Australasian data do not indicate an association between Adh and maximum rainfall which had been evident in the earlier data for Australasia, Asia and North America. We therefore retract our claim that the selective agent on Adh is related to rainfall.
The distributions of five Drosophila species and four components of the microflora have been compared across a total of 48 traps baited with four different fruit and vegetable substrates in two domestic compost heaps in Canberra (Australia). Large and consistent differences are found, both among the Drosophila and among the microbial classes, in their distributions across traps baited with different substrates. Moreover the distribution of each Drosophila species shows a unique set of strong associations with the microbial distributions. Thus the distributions of both D. simulans and D. melanogaster are found to be strongly negatively correlated with the abundance of bacteria while D. simulans is also strongly positively correlated with the titre of fermenter yeasts. D. immigrans is strongly positively correlated both with bacteria and with non-fermenter yeasts. D. hydei is positively correlated with nonfermentery yeasts and D. busckii is negatively correlated with fermenter yeasts. Moulds are the only microbial class not consistently associated with the distribution of any of the Drosophila species. The correlations with the other microbial classes are sufficient to explain the majority of the abundance differences of the Drosophila species among the trap types. It is therefore proposed that the clear partitioning of the fruit resources by the Drosophila is due to their differing primary interactions with the microflora.
Three experiments have been carried out which show that exogenous environments of ethanol impose selection on the alcohol dehydrogenase (Adh) locus of D. melanogaster. This locus is widely polymorphic for two alleles, AdhF and Adhs, and AdhF generally produces about twice as much alcohol dehydrogenase activity as Adhs. In the first experiment, AdhF IAdhF and AdhF/Adhs flies survived equally often and Adhs/Adhs flies less frequently after exposure for 7 days to medium impregnated with ethanol. The same pattern of survival differences was found in the second experiment in which flies were exposed for 1 day to an aqueous solution of ethanol and sucrose. In contrast, in the third experiment survival was scored after exposure for 45-min to ethanol fumes, and Adhs/ Adhs flies survived more often than AdhF/Adhs, both these genotypes surviving more frequently than Adh F / Adh F. We doubt whether anyone of the three experiments by itself adequately represents the ecology of natural populations of D. melanogaster exposed to ethanol. It is likely that mixtures of the three experimental conditions approximate more closely the natural environments and therefore we suggest that, overall, selection might favour intermediate levels of alcohol dehydrogenase activity, producing a net advantage for heterozygotes at the Adh locus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.