Abstract.We examined the process of seamount subduction via a numerical simulation using the finite element method, applying a frictional force on the plate interface that is proportional to the normal stress. We which suggests that fracturing will start there. We can surmise that, eventually, the seaward flank may be more apt to break than the landward flank at shallow depth if the confining pressure there is sufficiently low. We consider this to be a possible scenario for the generation of a thrust fault imaged at the seaward flank of the Muroto seamount, which is subducting under the Nankai trough accretionary prism.
We have successfully conducted the first ambient noise tomography on the island of Lombok, Indonesia using local waveform data observed at 20 temporary stations. Ambient noise tomography was used to delineate the seismic velocity structure in the upper crust. The waveform data were recorded from August 3rd to September 9th, 2018, using short-period and broadband sensors. There are 185 Rayleigh waves retrieved from cross-correlating the vertical components of the seismograms. We used frequency-time analysis (FTAN) to acquire the interstation group velocity from the dispersion curves. Group velocity was obtained for the period range of 1 s to 6 s. The group velocity maps were generated using the subspace inversion method and Fast Marching Method (FMM) to trace ray-paths of the surface waves through a heterogeneous medium. To extract the shear wave velocity (Vs) from the Rayleigh wave group velocity maps, we utilize the Neighborhood Algorithm (NA) method. The 2-D tomographic maps provide good resolution in the center and eastern parts of Lombok. The tomograms show prominent features with a low shear velocity that appears up to 4 km depth beneath Rinjani Volcano, Northern Lombok, and Eastern Lombok. We suggest these low velocity anomalies are associated with Quaternary volcanic products, including the Holocene pyroclastic deposits of Samalas Volcano (the ancient Rinjani Volcano) which erupted in 1257. The northeast of Rinjani Volcano is characterized by higher Vs, and we suggest this may be due to the presence of igneous intrusive rock at depth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.