The disintegration of three industry relevant algae (Chlorella vulgaris, Neochloris oleoabundans and Tetraselmis suecica) was studied in a lab scale bead mill at different bead sizes (0.3-1mm). Cell disintegration, proteins and carbohydrates released into the water phase followed a first order kinetics. The process is selective towards proteins over carbohydrates during early stages of milling. In general, smaller beads led to higher kinetic rates, with a minimum specific energy consumption of ⩽0.47kWhkg for 0.3mm beads. After analysis of the stress parameters (stress number and stress intensity), it appears that optimal disintegration and energy usage for all strains occurs in the 0.3-0.4mm range. During the course of bead milling, the native structure of the marker protein Rubisco was retained, confirming the mildness of the disruption process.
The effect of osmotic shock, enzymatic incubation, pulsed electric field, and high shear homogenization on the release of water-soluble proteins and carbohydrates from the green alga Ulva lactuca was investigated in this screening study. For osmotic shock, both temperature and incubation time had a significant influence on the release with an optimum at 30 °C for 24 h of incubation. For enzymatic incubation, pectinase demonstrated being the most promising enzyme for both protein and carbohydrate release. Pulsed electric field treatment was most optimal at an electric field strength of 7.5 kV cm−1 with 0.05 ms pulses and a specific energy input relative to the released protein as low as 6.6 kWh kgprot
−1. Regarding literature, this study reported the highest protein (~ 39%) and carbohydrate (~ 51%) yields of the four technologies using high shear homogenization. Additionally, an energy reduction up to 86% was achieved by applying a novel two-phase (macrostructure size reduction and cell disintegration) technique.Electronic supplementary materialThe online version of this article (10.1007/s10811-017-1319-8) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.