The ductile-brittle transition temperature (DBTT) of 9Cr-1Mo steel was characterized by an RT NDTbased K IR curve approach and a reference temperature (T 0 )-based master curve (MC) approach. The MC was developed at a dynamic loading condition (loading rate of 5.12 m/s), using precracked Charpy V-notch (PCVN) specimens, and the reference temperature was termed T 0 dy . The RT NDT and T 0 dy were determined to be Ϫ25 °C and Ϫ52 °C, respectively. The T 0 dy was also estimated from instrumented CVN tests, using a modified Schindler procedure to evaluate K Jd ; the result shows close agreement with that obtained from the PCVN tests. The ASME K IR -curve approach proves to be too conservative compared to the obtained trend of the fracture toughness with temperature. The cleavage fracture stress, , estimated from the critical length, l*, shows good agreement with that estimated from the load-temperature diagram (2400 to 2450 MPa), which was constructed from the CVN test results. The crack initiation mechanism has been identified as decohesion of the particle-matrix interface, rather than as the fracture of the particles. s f *
Residual life analysis of power plant components like boiler tubes, superheater outlet headers, reheater headers, steam pipes, etc., is important for life extension and avoidance of catastrophic failure. In this context, fracture toughness is very important. The fracture characteristics after prolonged exposure to high temperatures and pressures are likely to be different from that of the virgin material. 2.25Cr-1Mo reheater header pipe exposed at 813 K for 120,000 h was studied by instrumented impact tests (IIT) to evaluate dynamic fracture toughness and Charpy transition properties. The methods presented in this paper for estimating dynamic fracture toughness from IIT of Charpy specimens give reliably conservative results without the need for precracking. For estimating fracture appearance transition temperature (FATT) from IIT load-time traces, the equation for percent shear fracture, PSF3, gives the best 1:1 correlation with measured values from fracture surfaces. The lower bound equation for variation of fracture toughness with temperature derived in the present study is higher than that obtained from the FATT master curve (FATT-MC) approach. Comparison of Charpy indices like FATT and upper-shelf energy for the service exposed steel to results for the virgin material reported in the literature and the compositional J-Factor estimates for temper-embrittlement susceptibility indicate that the present steel, even after 120,000 h exposure to high temperature service, has probably undergone only very little or nil degradation in toughness properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.