Humans can recognize the plants infected by diseases but separated from our visual perception it is hard to recognize plant diseases. In croplands without taking the right care and prompt action, the entire field may become a region afflicted by diseases. So we identify the plant diseases
ahead of time with the assistance of present-day computer technologies. An advanced model was introduced to accurately recognize and classification plant diseases. Here we proposed an approach that can use the Convolutional Neural Network (CNN) based on BFOA for distinguishing diseases in
plants. The input picture for the extraction of features is divided into 3 clusters by the Euclidean distance measurement metric of the k-mean algorithm and from the ROI, parameters of the GLCM matrix are calculated in the same cluster prior to BFOA. Assigning matrix parameters as BFOA input
improves the network’s accuracy and efficiency in determining. In classification, we proposed a Convolutional Neural Network (CNN) using ResNet50 as a pre-trained network in deep learning toolbox which classifies from a given dataset. The approach is more reliable as the detection and
classification of plant diseases are more precise.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.