In this study, we characterized the polymorphism of milk fat (MF) with various TAG compositions during isothermal crystallization at 20 °C. TAG composition of MF from seven individual cows was determined using GC-FID and MALDI-TOF MS, and MF polymorphism was studied using X-ray diffraction. Results showed that TAG profile determines the polymorphic behavior of MF. Saturated TAG with carbon numbers 34-38 promoted the formation of α polymorphs, whereas unsaturated TAG with 52-54 promoted the formation of the β polymorphs. Furthermore, MFs with unsaturated fatty acid profiles were increased in unsaturated TAG with 52-54 carbons. The presence of MF crystals in the β polymorph has been controversial over the years as most authors mainly find MF crystals in the α and β' form. In our work, we showed that the β polymorph is formed in MF on the basis of its TAG composition.
The nanoscale structure of milk fat (MF) crystal networks is extensively described for the first time through the characterization of milk fat-crystalline nanoplatelets (MF-CNPs). Removing oil by washing with cold isobutanol and breaking-down crystal aggregates by controlled homogenization allowed for the extraction and visualization of individual MF-CNPs that are mainly composed of high melting triacylglycerols (TAGs). By image analysis, the length and width of MF-CNPs were measured (600 nm × 200 nm-900 nm × 300 nm). Using small-angle X-ray scattering (SAXS), crystalline domain size, (i.e., thickness of MF-CNPs), was determined (27 nm (d001)). Through interpretation of ultra-small-angle X-ray scattering (USAXS) patterns of MF using Unified Fit and Guinier-Porod models, structural properties of MF-CNPs (smooth surfaces) and MF-CNP aggregations were characterized (RLCA aggregation of MF-CNPs to form larger structures that present diffused surfaces). Elucidation of MF-CNPs provides a new dimension of analysis for describing MF crystal networks and opens-up opportunities for modifying MF properties through nanoengineering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.