Savonius wind turbines are characterized by various advantages such as simple design, independence of wind direction, and low noise emission, but they suffer from low efficiency. Numerous investigations were carried out to face this problem. In the present paper, a new idea of the Savonius turbine with a variable geometry of blades is proposed. Its blades, made of elastic material, were continuously deformed during the rotor revolution to increase a positive torque of the advancing blade and to decrease a negative torque of the returning blade. In order to assess the turbine aerodynamic performance, a two-dimensional numerical model was developed. The fluid-structure interaction (FSI) method was applied where blade deformations were defined by computational solid mechanics (CSM) simulations, whereas computational fluid dynamics (CFD) simulations allowed for transient flow prediction. The influence of the deformation magnitude and the position of maximally deformed blades with respect to the incoming wind direction were studied. The aerodynamic performance increased with an increase in the deformation magnitude. The power coefficient exceeded Cp = 0.30 for the eccentricity magnitude of 10% and reached 0.39 for the highest magnitude under study. It corresponded to 90% improvement in comparison to Cp = 0.21 in the case of the fixed-shape Savonius turbine.
BackgroundThis study investigated flow analysis inside pediatric ventricle assist devices (VADs) designed and manufactured at the Foundation for Cardiac Surgery Development (FRK), Zabrze, Poland. The main goal of the experiment was to define the minimal heart rate admissible in clinical practice.MethodsThe flow was directed by mechanical, single-disc valves developed at the Lodz University of Technology, Institute of Turbomachinery in Lodz, Poland. VAD operation conditions under different heart rates were analyzed. Measurements were performed on Religa PED pediatric VADs (45 cm3 and 30 cm3) with a particle image velocimetry (PIV) system.ResultsDue to the PIV method used, the measurements were made without interference of the measuring system onto the flow structure in the investigated channel, as the measurement procedure is noninvasive. During the investigations conducted in different measurement planes, the majority of the flow volume in the chamber was observable.ConclusionsThe measurements at different heart rates demonstrated a significant influence of this parameter on the flow nature in the heart ventricle. Additionally, it was found that the heart rate affected the operation of heart valves in the VAD.
Purpose: An arteriovenous fistula has been a widely accepted vascular access for hemodialysis, however, a fistula maturation proces is still not fully understood. In the short period of time, right after vein and artery shunting, the physical and biological changes take place mainly in the venous wall. A two-stage modeling method of arteriovenous fistula maturation process was proposed and presented. Methods: The first stage of the maturation was modeled with two-way coupled fluid structure interaction computer simulations. Whereas for the second, biological stage, a model was based on the change in the elasticity of the venous wall due to wall shear stress (WSS) modifications. Results: The relation between stress and radial and circumferential strain, based on Lame’s theory, makes possible to introduce a mathematical model defining modulus of elasticity, averaged WSS, and venous diameter as time functions. The presented model enables one to predict changes in the monitored parameters in the arteriovenous fistula taking place in the time longer than 90 days. Conclusions: We found that probably the majority of fistulas can be assessed to be mature too early, when the adequate blood flow rate is achieved but mean WSS still remains at the non-physiological level (>10 Pa).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.