BackgroundThis study investigated flow analysis inside pediatric ventricle assist devices (VADs) designed and manufactured at the Foundation for Cardiac Surgery Development (FRK), Zabrze, Poland. The main goal of the experiment was to define the minimal heart rate admissible in clinical practice.MethodsThe flow was directed by mechanical, single-disc valves developed at the Lodz University of Technology, Institute of Turbomachinery in Lodz, Poland. VAD operation conditions under different heart rates were analyzed. Measurements were performed on Religa PED pediatric VADs (45 cm3 and 30 cm3) with a particle image velocimetry (PIV) system.ResultsDue to the PIV method used, the measurements were made without interference of the measuring system onto the flow structure in the investigated channel, as the measurement procedure is noninvasive. During the investigations conducted in different measurement planes, the majority of the flow volume in the chamber was observable.ConclusionsThe measurements at different heart rates demonstrated a significant influence of this parameter on the flow nature in the heart ventricle. Additionally, it was found that the heart rate affected the operation of heart valves in the VAD.
Background:A pneumatic paediatric ventricular assist device developed at the Foundation of Cardiac Surgery Development, Zabrze, equipped with valves based on J. Moll’s design, with later modifications introduced at the Institute of Turbomachinery, Lodz University of Technology, was tested numerically and experimentally. The main aim of those investigations was to detect stagnation zones within the ventricular assist device and indicate advantages and limitations of both approaches.Methods:In the numerical transient test, a motion of the diaphragm and discs was simulated. Two different methods were used to illustrate stagnation zones in the ventricular assist device. The flow pattern inside the chamber was represented by velocity contours and vectors to validate the results using images obtained in the laser particle image velocimetry experiment.Results:The experimental light-based method implied problems with proper illumination of regions in the wall vicinity. High-resolution flow data and other important parameters as stagnation regions or flow patterns in regions not accessible for light in the particle image velocimetry method are derived in the numerical solution. However, computations of a single case are much more time-consuming if compared to a single experiment conducted on a well-calibrated stand.Conclusion:The resulting main vortexes in the central part of the pump chamber and the velocity magnitudes are correlated in both methods, which are complementary and when used together offer better insight into the flow structure inside the ventricular assist device and enable a deeper analysis of the results.
Introduction:A constant growth in the population suffering from osteoporotic vertebral weakening is observed. As a result, vertebroplasty procedures become more and more common. Unfortunately, they may be associated with several complications occurring during bone cement injection, including its leakage or overheating of tissues. Despite several experimental studies, there is a lack of data related to random aeration of the bone cement. Therefore, the main objective of the following investigations was to emphasize that random aeration of the bone cement, and, consequently, a compressibility factor, could not be treated as a negligible factor during the vertebroplasty procedure and had to be taken into account in the development of the mathematical model.Materials and methods:A special test rig to reproduce the vertebroplasty procedure was designed and built. The authors conducted numerous experiments on polymethylmethacrylate-based bone cement flows, analyzing different flow conditions, such as volume flow rate and flow channel diameter. Time periods of the flow front between characteristic sections and pressures (differential and gauge) were measured.Results:All investigations revealed that bone cements mixed in special mixing kits were characterized by a random level of aeration which led to varied flow parameters. Comparing the experimental results with the theoretical values of the continuity equation, the highest difference in the flow duration reached 140%.Discussion:It has been proven that the aeration of the bone cement alters the flow dynamics. Therefore, much more data are required for statistical analysis to validate a mathematical model of the bone cement flow.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.