We use the HyperKähler quotient of flat space to obtain some monopole moduli space metrics in explicit form. Using this new description, we discuss their topology, completeness and isometries. We construct the moduli space metrics in the limit when some monopoles become massless, which corresponds to non-maximal symmetry breaking of the gauge group. We also introduce a new family of HyperKähler metrics which, depending on the "mass parameter" being positive or negative, give rise to either the asymptotic metric on the moduli space of many SU (2) monopoles, or to previously unknown metrics. These new metrics are complete if one carries out the quotient of a non-zero level set of the moment map, but develop singularities when the zero-set is considered. These latter metrics are of relevance to the moduli spaces of vacua of three dimensional gauge theories for higher rank gauge groups. Finally, we make a few comments concerning the existence of closed or bound orbits on some of these manifolds and the integrability of the geodesic flow.
In this note we show that rigid N = 2 superconformal hypermultiplets must have target manifolds which are cones over tri-Sasakian metrics. We comment on the relation of this work to cone-branes and the AdS/CFT correspondence.
We describe some single-sided BPS domain wall configurations in M-theory.
These are smooth non-singular resolutions of Calabi--Yau orbifolds obtained by
identifying the two sides of the wall under reflection. They may thus be
thought of as domain walls at the end of the universe. We also describe related
domain wall type solutions with a negative cosmological constant.Comment: 38 pages, LaTe
The dynamics of n slowly moving fundamental monopoles in the SU (n + 1) BPS Yang-Mills-Higgs theory can be approximated by geodesic motion on the 4n-dimensional hyperkähler Lee-Weinberg-Yi manifold. In this paper we apply a variational method to construct some scaling geodesics on this manifold. These geodesics describe the scattering of n monopoles which lie on the vertices of a bouncing polyhedron; the polyhedron contracts from infinity to a point, representing the spherically symmetric n-monopole, and then expands back out to infinity. For different monopole masses the solutions generalize to form bouncing nested polyhedra. The relevance of these results to the dynamics of well separated SU (2) monopoles is also discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.