The mature root nodules of Phaseolus mungo (L.), a leguminous pulse, contain higher amount of indole acetic acid (IAA) than non-nodulated roots. The tryptophan pool present in the mature nodule and young roots might serve as a precursor for the IAA production. Presence of IAA metabolising enzymes - IAA oxidase and peroxidase - indicate the metabolism of IAA in the nodules and roots. In culture, the symbiont, isolated from the nodules, produced a high amount of IAA, when tryptophan was supplied in the medium as a precursor. The symbiont preferred l-isomer over the dl- or d-isomer of tryptophan for IAA production. The important physiological implication of the IAA production in the legume-Rhizobium symbiosis is discussed.
The root nodules of Phaseolus mungo (a herbaceous leguminous pulse) contained a high amount of 3-indolylacetic acid (IAA). A tryptophan pool present in the nodule might play the role of precursor for IAA production. From the root nodule a Rhizobium sp. was isolated. The symbiont produced a large amount of IAA (142 microg/mL) from L-tryptophan-supplemented basal medium. The production of IAA by the symbiont was much increased over the control when a L-tryptophan (2 mg/mL) supplemented C-free mineral medium was enriched with mannitol (1 %), L-asparagine (0.3 %) and thiamine hydrochloride (1 microg/mL). The possible role of the rhizobial production of IAA on the rhizobia-legume symbiosis is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.