In this work we describe two different models for interpreting and predicting Reflection Electron Energy Loss (REEL) spectra and we present results of a study on metallic systems comparing the computational cost and the accuracy of these techniques. These approaches are the Monte Carlo (MC) method and the Numerical Solution (NS) of the Ambartsumian-Chandrasekhr equations. The former is based on a statistical algorithm to sample the electron trajectories within the target material for describing the electron transport. The latter relies on the numerical solution of the Ambartsumian-Chandrasekhar equations using the invariant embedding method. Both methods receive the same input parameters to deal with the elastic and inelastic electron scattering. To test their respective capability to describe REEL experimental spectra, we use copper, silver, and gold as case studies. Our simulations include both bulk and surface plasmon contributions to the energy loss spectrum by using the effective electron energy loss functions and the relevant extensions to finite momenta. The agreement between MC and NS theoretical spectra with experimental data is remarkably good. Nevertheless, while we find that these approaches are comparable in accuracy, the computational cost of NS is several orders of magnitude lower than the widely used MC. Inputs, routines and data are enclosed with this manuscript via the Mendeley database.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.