Abstract. The BL Lacertae object AO 0235+16 is well known for its extreme optical and radio variability. New optical and radio data have been collected in the last four years by a wide international collaboration, which confirm the intense activity of this source: on the long term, overall variations of 5 mag in the R band and up to a factor 18 in the radio fluxes were detected, while short-term variability up to 0.5 mag in a few hours and 1.3 mag in one day was observed in the optical band. The optical data also include the results of the Whole Earth Blazar Telescope (WEBT) first-light campaign organized in November 1997, involving a dozen optical observatories. The optical spectrum is observed to basically steepen when the source gets fainter. We have investigated the existence of typical variability time scales and of possible correlations between the optical and radio emissions by means of visual inspection and Discrete Correlation Function (DCF) analysis. On the long term, the autocorrelation function of the optical data shows a double-peaked maximum at 4100-4200 days (11.2-11.5 years), while a double-peaked maximum at 3900-4200 days (10.7-11.5 years) is visible in the radio autocorrelation functions. The existence of this similar characteristic time scale of variability in the two bands is by itself an indication of optical-radio correlation. A further analysis by means of Discrete Fourier Transform (DFT) technique and folded light curves reveals that the major radio outbursts repeat quasi-regularly with a periodicity of ∼5.7 years, i.e. half the above time scale. This period is also in agreement with the occurrence of some of the major optical outbursts, but not all of them. Visual inspection and DCF analysis of the optical and radio light curves then reveal that in some cases optical outbursts seem to be simultaneous with radio ones, but in other cases they lead the radio events. Moreover, a deep inspection of the radio light curves suggests that in at least two occasions (the 1992-1993 and 1998 outbursts) flux variations at the higher frequencies may have led those at the lower ones.
Here we describe the Siding Spring Southern Seyfert Spectroscopic Snapshot Survey (S7) and present results on 64 galaxies drawn from the first data release. The S7 uses the Wide Field Spectrograph mounted on the ANU 2.3 m telescope located at the Siding Spring Observatory to deliver an integral field of 38 × 25 arcsec at a spectral resolution of R = 7000 in the red (530-710 nm), and R = 3000 in the blue (340-560 nm). From these data cubes we have extracted the narrow-line region spectra from a 4 arcsec aperture centered on the nucleus. We also determine the Hβ and [O III] λ5007 fluxes in the narrow lines, the nuclear reddening, the reddening-corrected relative intensities of the observed emission lines, and the Hβ and [O III] λ5007 luminosities determined from spectra for which the stellar continuum has been removed. We present a set of images of the galaxies in, and Hα, which serve to delineate the spatial extent of the extended narrow-line region and also to reveal the structure and morphology of the surrounding H II regions. Finally, we provide a preliminary discussion of those Seyfert 1 and Seyfert 2 galaxies that display coronal emission lines in order to explore the origin of these lines.
The optical spectra of Seyfert galaxies are often dominated by emission lines excited by both star formation and AGN activity. Standard calibrations (such as for the star formation rate) are not applicable to such composite (mixed) spectra. In this paper, we describe how integral field data can be used to spectrally and spatially separate emission associated with star formation from emission associated with accretion onto an active galactic nucleus (AGN). We demonstrate our method using integral field data for two AGN host galaxies (NGC 5728 and NGC 7679) from the Siding Spring Southern Seyfert Spectroscopic Snapshot Survey (S7). The spectra of NGC 5728 and NGC 7679 form clear sequences of AGN fraction on standard emission line ratio diagnostic diagrams. We show that the emission line luminosities of the majority (> 85 per cent) of spectra along each AGN fraction sequence can be reproduced by linear superpositions of the emission line luminosities of one AGN dominated spectrum and one star formation dominated spectrum. We separate the Hα, Hβ, [N II]λ6583, [S II]λλ6716, 6731, [O III]λ5007 and [O II]λλ3726, 3729 luminosities of every spaxel into contributions from star formation and AGN activity. The decomposed emission line images are used to derive the star formation rates and AGN bolometric luminosities for NGC 5728 and NGC 7679. Our calculated values are mostly consistent with independent estimates from data at other wavelengths. The recovered star forming and AGN components also have distinct spatial distributions which trace structures seen in high resolution imaging of the galaxies, providing independent confirmation that our decomposition has been successful.
Context. The international Whole Earth Blazar Telescope (WEBT) consortium planned and carried out three days of intensive micro-variability observations of S5 0716+714 from February 22, 2009 to February 25, 2009. This object was chosen due to its bright apparent magnitude range, its high declination, and its very large duty cycle for micro-variations. Aims. We report here on the long continuous optical micro-variability light curve of 0716+714 obtained during the multi-site observing campaign during which the Blazar showed almost constant variability over a 0.5 mag range. The resulting light curve is presented here for the first time.Observations from participating observatories were corrected for instrumental differences and combined to construct the overall smoothed light curve. Methods. Thirty-six observatories in sixteen countries participated in this continuous monitoring program and twenty of them submitted data for compilation into a continuous light curve. The light curve was analyzed using several techniques including Fourier transform, Wavelet and noise analysis techniques. Those results led us to model the light curve by attributing the variations to a series of synchrotron pulses. Results. We have interpreted the observed microvariations in this extended light curve in terms of a new model consisting of individual stochastic pulses due to cells in a turbulent jet which are energized by a passing shock and cool by means of synchrotron emission. We obtained an excellent fit to the 72-hour light curve with the synchrotron pulse model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.