Knowledge on structure and conserved domain of Musa chitinase isoforms and their responses to various biotic stresses will give a lead to select the suitable chitinase isoform for developing biotic stress-resistant genotypes. Hence, in this study, chitinase sequences available in the Musa genome hub were analyzed for their gene structure, conserved domain, as well as intron and exon regions. To identify the Musa chitinase isoforms involved in Pratylenchus coffeae (root lesion nematode) and Mycosphaerella eumusae (eumusa leaf spot) resistant mechanisms, differential gene expression analysis was carried out in P. coffeae- and M. eumusae-challenged resistant and susceptible banana genotypes. This study revealed that more number of chitinase isoforms (CIs) were responses upon eumusa leaf spot stress than nematode stress. The nematode challenge studies revealed that class II chitinase (GSMUA_Achr9G16770_001) was significantly overexpressed with 6.75-fold (with high fragments per kilobase of exon per million fragments mapped (FPKM)) in resistant genotype (Karthobiumtham-ABB) than susceptible (Nendran-AAB) genotype, whereas when M. eumusae was challenge inoculated, two class III CIs (GSMUA_Achr9G25580_001 and GSMUA_Achr8G27880_001) were overexpressed in resistant genotype (Manoranjitham-AAA) than the susceptible genotype (Grand Naine-AAA). However, none of the CIs were found to be commonly overexpressed under both stress conditions. This study reiterated that the chitinase genes are responding differently to different biotic stresses in their respective resistant genotypes.
The present study was aimed to screen the phytochemicals and quantification of alkaloids, phenolic compounds and flavonoids and to evaluate the nematicidal activity of ethanolic leaf extracts of Datura metel, Datura innoxia and Brugmansia suaveolens against Meloidogyne incognita. Phytochemical screening of leaf extracts of D. metel, D. innoxia and B. suaveolens was carried out by qualitative analysis and the results revealed that the presence of bioactive compounds like alkaloids, steroids, flavonoids, terpenoids, phenolic compounds, tannins, anthroquinone glycosides,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.