The percentage collagen loss was high in skin when compared with tail. This may be due to the site of application where in the nano zinc oxide may be passed through skin due to their small size and may induce oxidative stress. Hence, we suggest that regulators and industry need to address the toxicity of nanomaterials with a realistic exposure assessment rather following conventional dose measurements following existing protocols.
As an alternative to the standard Draize eye irritation test, the potential irritancy of compounds was evaluated by observing adverse changes that occur in chorioallantoic membrane CAM) of the hen egg (HECAM) after exposure to a test chemical placed directly on the CAM. The occurrence of hemorrhage, coagulation, and lysis in response to a test compound is the basis for employing this technique to evaluate its potential for in vivo damage to mucous membrane, in particular the eye. Irritancy is scored according to the severity and speed at which damage occurs. In the present study, five different classes of pesticides were screened for irritation potential. There was good correlation between the HECAM assay and the in vivo Draize eye irritation test. The proposed HECAM assay, which reduces the requirement for laboratory animals, could be a painless alternative to the Draize test.
The skin irritation test is designed for the prediction of acute skin irritation of nanoparticles by measurement of its cytotoxic effect, as reflected in the MTT assay, on the Reconstructed Human Epidermis (RHE) model. RHE tissues are commercially available.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.