Two analytical methods were developed and refined for the detection and quantitation of two groups of endocrine-disrupting chemicals (EDCs) in the liquid matrixes of two pilot-scale municipal wastewater treatment plants. The targeted compounds are seven sex hormones (estradiol, ethinylestradiol, estrone, estriol, testosterone, progesterone, and androstenedione), a group of nonionic surfactants (nonylphenol polyethoxylates), and their biodegradation byproducts nonylphenol and nonylphenol ethoxylates with one, two, and three ethoxylates. Solid phase extraction using C-18 for steroids and graphitized carbon black for the surfactants were used for extraction. HPLC-DAD and GC/MS were used for quantification. Each of the two 20 L/h pilot-scale plants consists of a primary settling tank followed by a three-stage aeration tank and final clarification. The primary and the waste-activated sludge are digested anaerobically in one plant and aerobically in the other. The pilot plants are fed with a complex synthetic wastewater spiked with the EDCs. Once steady state was reached, liquid samples were collected from four sampling points to obtain the profile for all EDCs along the treatment system. Complete removal from the aqueous phase was obtained for testosterone, androstenedione, and progesterone. Removals for nonylphenol polyethoxylates, estradiol, estrone, and ethinylestradiol from the aqueous phase exceeded 96%, 94%, 52%, and 50%, respectively. Levels of E3 in the liquid phase were low, and no clear conclusions could be drawn concerning its removal.
Male and female Sprague-Dawley rats were exposed to drinking water containing 3.0, 12.0 or 48.0 mM sodium chlorate. The mean drinking water consumption varied between exposure groups from 100-200 ml/kg/day. Female exposure groups consistently drank more water (23-42%) than male exposure groups thereby receiving more chlorate/kg/day at every exposure level. There were no compound related deaths; however, both males and females in the high exposure groups had significant weight loss during the 90-day exposure period. Also, in these same groups females had mild but significant decreases in the following relative organ weights; adrenals, thymus and spleen, while the relative brain weight was increased. In males, the heart, kidneys and liver were mildly decreased while the brain and testes were mildly increased. Red blood cell counts and percent hematocrit were decreased in both sexes in the high dose group. Pituitary gland (pars distalis) vacuolization and thyroid gland colloid depletion were prominent in both sexes in mid and/or high dose animals. A NOAEL of 0.36 mM chlorate/kg b.w./day in males and 0.50 mM chlorate/kg b.w./day in females were established.
Pregnant rats were exposed to drinking water with lead (Pb) concentrations of 0, 30, or 200 mg/l. The resultant pups were sacrificed at 11, 15, and 21 d of postnatal age for the determination of synapses/mm3 in parietal cortex. Synaptic counts from electron micrographs of ethanol phosphotungstic acid stained cortical slices were counted by four observers who were blinded as to treatment (control or 200 mg Pb/l drinking water). A greater than fourfold increase in synaptic counts was observed in layers I, II, and III of rat pups parietal cortex between 11 and 21 d of age. Pb treatment depressed synaptic counts maximally at 15 d of age. However, Pb-exposed pups displayed essentially the same synaptic counts as controls by 21 d of age. In a cross-fostering design, it was shown that prenatal exposure to Pb completely accounted for the delays in synaptogenesis. No significant depression of synaptic counts was observed in pups exposed only during the postnatal period. Blood lead concentrations (Pb X B) were determined during gestation and suckling in both mother and offspring. A dramatic peripartum (partum plus and minus 4 d) peak in Pb X B was seen in mother and pup. Pup Pb X B peaked at 80 micrograms/dl at exposures of 200 mg Pb/l drinking water. In addition to being dose-dependent, blood Pb levels resulting from the same concentration of Pb in drinking water displayed a significant dependence on litter at time-points between birth and 1 yr of age. These data indicate that the substantially elevated blood Pb concentrations that are evident at partum in pups prenatally exposed to Pb might be responsible for the postnatally observed delay in synaptogenesis.
The effects of drinking water containing 2 or 15 ppm chlorine (pH 6.5 and 8.5), chlorine dioxide, and monochloramine on thyroid function and plasma cholesterol were studied because previous investigators have reported cardiovascular abnormalities in experimental animals exposed to chlorinated water. Plasma thyroxine (T4) levels, as compared to controls, were significantly decreased in pigeons fed a normal or high-cholesterol diet and drinking water containing these drinking water disinfectants at a concentration of 15 ppm (the exception was chlorine at pH 6.5) for 3 months. In most of the treatment groups, T4 levels were significantly lower following the exposure to drinking water containing the 2 ppm dose. Increases in plasma cholesterol were frequently observed in the groups with lower T4 levels. This association was most evident in pigeons fed the high-cholesterol diet and exposed to these disinfectants at a dose of 15 ppm. For example, after 3 months of exposure to deionized water or water containing 15 ppm monochloramine, plasma cholesterol was 1266 ± 172 and 2049 ± 212 mg/dl, respectively, a difference of 783 mg/dl. The factor(s) associated with the effect of these disinfectants on plasma T4 and cholesterol is not known. We suggest however that these effects are probably mediated by products formed when these disinfectants react with organic matter in the upper gastrointestinal tract.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.