The shear stresses in printed scaffold systems for tissue engineering depend on the flow properties and void volume in the scaffold. In this work, computational fluid dynamics (CFD) is used to simulate flow fields within porous scaffolds used for cell growth. From these models the shear stresses acting on the scaffold fibres are calculated. The results led to the conclusion that the Darcian (k 1 ) permeability constant is a good predictor for the shear stresses in scaffold systems for tissue engineering. This permeability constant is easy to calculate from the distance between and thickness of the fibres used in a 3D printed scaffold. As a consequence computational effort and specialists for CFD can be circumvented by using this permeability constant to predict the shear stresses. If the permeability constant is below a critical value, cell growth within the specific scaffold design may cause a significant increase in shear stress. Such a design should therefore be avoided when the shear stress experienced by the cells should remain in the same order of magnitude.
Lipase type B from Candida antarctica was used to catalyze the esterification of propionic acid and 1-butanol in a water/n-decane two-phase system on micro and on bench scale. The reaction was described by a Ping Pong Bi Bi mechanism with alcohol inhibition. The kinetic parameters on micro and bench scale were compared; no significant differences were found. Furthermore, effects of temperature on activation and inactivation of the enzyme were found to be similar on micro and bench scale. Therefore, parameters found on either scale can be used for the other scale. Enzyme kinetic parameters can be determined on a micro scale, with very low consumption of reagents and catalyst, and then be applied to bench scale. This can reduce the cost of optimizing enzyme processes by downscaling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.