BackgroundEndovascular technological advances have revolutionized the field of neurovascular surgery and have become the mainstay of treatment for many cerebrovascular pathologies. Digital subtraction angiography (DSA) is the ’gold standard' for visualization of the vasculature and deployment of endovascular devices. Nonetheless, with recent technological advances in optics, angioscopy has emerged as a potentially important adjunct to DSA. Angioscopy can offer direct visualization of the intracranial vasculature, and direct observation and inspection of device deployment. However, previous iterations of this technology have not been sufficiently miniaturized or practical for modern neurointerventional practice.ObjectiveTo describe the evolution, development, and design of a microangioscope that offers both high-quality direct visualization and the miniaturization necessary to navigate in the small intracranial vessels and provide examples of its potential applications in the diagnosis and treatment of cerebrovascular pathologies using an in vivo porcine model.MethodsIn this proof-of-concept study we introduce a novel microangioscope, designed from coherent fiber bundle technology. The microangioscope is smaller than any previously described angioscope, at 1.7 F, while maintaining high-resolution images. A porcine model is used to demonstrate the resolution of the images in vivo.ResultsVideo recordings of the microangioscope show the versatility of the camera mounted on different microcatheters and its ability to navigate external carotid artery branches. The microangioscope is also shown to be able to resolve the subtle differences between red and white thrombi in a porcine model.ConclusionA new microangioscope, based on miniaturized fiber optic technology, offers a potentially revolutionary way to visualize the intracranial vascular space.
lower total pass number than M1 thrombectomy. However, mechanical thrombectomy in the M2 using recent generations of stent retriever technology is associated with higher rates of SAH, likely related to tension on the vessels when pulling through a more tortuous MCA segment.
BACKGROUND AND PURPOSE: Visualization in neuroendovascular intervention currently relies on biplanar fluoroscopy and contrast administration. With the advent of endoscopy, direct visualization of the intracranial intravascular space has become possible with microangioscopes. We analyzed the efficacy of our novel microangioscope to enable direct observation and inspection of the cerebrovasculature, complementary to a standard fluoroscopic technique.MATERIALS AND METHODS: Iterations of microangioscopes were systematically evaluated for use in neurodiagnostics and neurointerventions in both live animal and human cadaveric models. Imaging quality, trackability, and navigability were assessed. Diagnostic procedures assessed included clot identification and differentiation, plaque identification, inspection for vessel wall injury, and assessment of stent apposition. Interventions performed included angioscope-assisted stent-retriever thrombectomy, clot aspiration, and coil embolization. RESULTS:The microangioscope was found helpful in both diagnosis and interventions by independent evaluators. Mean ratings of the imaging quality on a 5-point scale ranged from 3.0 (clot identification) to 4.7 (Pipeline follow-up). Mean ratings for clinical utility ranged from 3.0 (aspiration thrombectomy) to 4.7 (aneurysm treatment by coil embolization and WEB device).CONCLUSIONS: This fiber optic microangioscope can safely navigate and visualize the intravascular space in human cadaveric and in vivo animal models with satisfactory resolution. It has potential value in diagnostic and neurointerventional applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.