We present 855 cataclysmic variable candidates detected by the Catalina Real-time Transient Survey (CRTS) of which at least 137 have been spectroscopically confirmed and 705 are new discoveries. The sources were identified from the analysis of five years of data, and come from an area covering three quarters of the sky. We study the amplitude distribution of the dwarf novae CVs discovered by CRTS during outburst, and find that in quiescence they are typically two magnitudes fainter compared to the spectroscopic CV sample identified by SDSS. However, almost all CRTS CVs in the SDSS footprint have ugriz photometry. We analyse the spatial distribution of the CVs and find evidence that many of the systems lie at scale heights beyond those expected for a Galactic thin disc population. We compare the outburst rates of newly discovered CRTS CVs with the previously known CV population, and find no evidence for a difference between them. However, we find that significant evidence for a systematic difference in orbital period distribution. We discuss the CVs found below the orbital period minimum and argue that many more are yet to be identified among the full CRTS CV sample. We cross-match the CVs with archival X-ray catalogs and find that most of the systems are dwarf novae rather than magnetic CVs.
Some unsolved problems concerning pure radiation fields in general relativity are studied. The general solutions for homogeneous and for conformally Ricci flat metrics are given. They are all of Petrov type N or O, and contain a hitherto unidentified conformally flat metric. Non-aligned Petrov type III pure radiation metrics are shown not to exist.
Abstract. The double-mode pulsation of GSC 00144-03031 has been detected when searching for COROT targets. A very large dataset composed of 4722 photometric measurements was collected at six observatories in Europe and America. There is no hint of the excitation of additional modes (down to 0.6 mmag) and therefore GSC 00144-03031 seems to be a pure double-mode pulsator, with a very short fundamental radial mode (P = 84 min). From uvbyβ photometry and evolutionary tracks it appears to be a Pop. I star with M = 1.75 M , located in the middle of the instability strip, close to the Zero-Age Main Sequence. We also discovered other new double-mode pulsators in the databases of large-scale projects: OGLE BW2_V142, OGLE BW1_V207, ASAS3 094303-1707.3, ASAS3 000116-6037.0, NSVS 3234596 and NSVS 3324715. An observational Petersen diagram is presented and explained by means of new models. A common sequence connecting Pop. I stars from the shortest to the longest periods is proposed and the spreads in the period ratios are ascribed to different metallicities (at the shortest periods) and to different masses (at the longest ones).
By cross-matching blue objects from the Sloan Digital Sky Survey with Galaxy Evolution Explorer and the astrometric catalogues USNO-B1.0, GSC2.3 and CMC14, 64 new dwarf nova candidates with one or more observed outbursts have been identified. 14 of these systems are confirmed as cataclysmic variables through existing and follow-up spectroscopy. A study of the amplitude distribution and an estimate of the outburst frequency of these new dwarf novae and those discovered by the Catalina Real-time Transient Survey indicate that besides systems that are faint because they are farther away, there also exists a population of intrinsically faint dwarf novae with rare outbursts.
A search for RR Lyrae stars has been conducted in the publicly available data of the Northern Sky Variability Survey. Candidates have been selected by the statistical properties of their variation; the standard deviation, skewness and kurtosis with appropriate limits determined from a sample 314 known RRab and RRc stars listed in the General Catalogue of Variable Stars. From the period analysis and light-curve shape of over 3000 candidates 785 RR Lyrae have been identified of which 188 are previously unknown. The light curves were examined for the Blazhko effect and several new stars showing this were found. Six double-mode RR Lyrae stars were also found of which two are new discoveries. Some previously known variables have been reclassified as RR Lyrae stars and similarly some RR Lyrae stars have been found to be other types of variable, or not variable at all.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.