BACKGROUND AND PURPOSE:Quantitative susceptibility mapping of the human brain has demonstrated strong potential in examining iron deposition, which may help in investigating possible brain pathology. This study assesses the reproducibility of quantitative susceptibility mapping across different imaging sites.
Purpose In quantitative susceptibility mapping (QSM) using magnetic resonance imaging, image reconstruction methods usually aim at suppressing streaking artifacts. In this study, a streaking detection method is proposed for evaluating and optimizing quantitative susceptibility maps. Methods Nine healthy subjects participated in this study and underwent three‐dimensional multi‐echo gradient echo scans. Regularized iterative algorithm was used for reconstruction of tissue susceptibility maps in all subjects. Streaking detection was applied to evaluate streaking artifact in tissue susceptibility maps. In addition, an optimization process for QSM reconstruction by streaking detection was applied and was compared with matching noise level method. Results It is shown that the proposed streaking detection technique effectively delineates streaking artifact in tissue susceptibility maps. In QSM reconstruction, optimization by streaking detection successfully determines the regularization factor that balances between streaking artifact suppression and tissue texture preservation. ROI analyses of brain tissue susceptibility show that optimization by streaking detection achieves results in good agreement with that from matching noise level method. Conclusions Streaking detection enables direct visualization of streaking patterns in tissue susceptibility maps. It can be applied both for evaluating QSM reconstruction quality and for comparing different reconstruction algorithms. Furthermore, streaking detection can be incorporated into an optimization process of QSM reconstruction. Therefore, we conclude that the proposed method will add value to reconstruction of QSM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.