Epithelial–mesenchymal transition (EMT) is a critical event in metastasis of colorectal cancer (CRC). Rho/ROCKs signaling has a pivotal role in orchestrating actin cytoskeleton, leading to EMT and cancer invasion. However, the underlying mechanisms for ROCKs activation are not fully understood. Here, we identified FOXM1D, a novel isoform of Forkhead box M1 (FOXM1) that has a pivotal role in ROCKs activation by directly interacting with coiled-coil region of ROCK2. FOXM1D overexpression significantly polymerizes actin assembly and impairs E-cadherin expression, resulting in EMT and metastasis in xenograft mouse model and knockdown of FOXM1D has the opposite effect. Moreover, a high FOXM1D level correlates closely with clinical CRC metastasis. FOXM1D-induced ROCKs activation could be abrogated by the ROCKs inhibitors Y-27632 and fasudil. These observations indicate that the FOXM1D–ROCK2 interaction is crucial for Rho/ROCKs signaling and provide novel insight into actin cytoskeleton regulation and therapeutic potential for CRC metastasis.
Molecular dynamics simulations are performed to investigate the structural phase transition in body-centered cubic (bcc) single crystal iron under high strain rate loading. We study the nucleation and growth of the hexagonal-close-packed (hcp) and face-centered-cubic (fcc)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.