A computerized method to automatically detect malignant masses on digital mammograms based on bilateral subtraction to identify asymmetries between left and right breast images was developed. After the digitization, in order to align left and right mammograms the breast border and nipple were automatically detected. Images were corrected to avoid differences in brightness due to the recording procedure. Left and right mammograms were subtracted and a threshold was applied to obtain a binary image with the information of suspicious areas. The suspicious regions or asymmetries were delimited by a region growing algorithm. Size and eccentricity tests were used to eliminate false-positive responses and texture features were extracted from suspicious regions to reject normal tissue regions. The scheme, tested in 70 pairs of digital mammograms, achieved a true-positive rate of 71% with an average number of 0.67 false positives per image. Computerized detection was evaluated by using free-response operating characteristic analysis (FROC). An area under the AFROC (A1) of 0.667 was obtained. Our results show that the scheme may be helpful to the radiologists by serving as a second reader in mammographic screening. The low number of false positives indicates that our scheme would not confuse the radiologist by suggesting normal regions as suspicious.
AutoMeKin2021 is an updated version of tsscds2018, a program for the automated discovery of reaction mechanisms (J. Comput. Chem. 2018, 39, 1922). This release features a number of new capabilities: rare‐event molecular dynamics simulations to enhance reaction discovery, extension of the original search algorithm to study van der Waals complexes, use of chemical knowledge, a new search algorithm based on bond‐order time series analysis, statistics of the chemical reaction networks, a web application to submit jobs, and other features. The source code, manual, installation instructions and the website link are available at: https://rxnkin.usc.es/index.php/AutoMeKin
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.