Angiography by Optical Coherence Tomography (OCT-A) is a non-invasive retinal imaging modality of recent appearance that allows the visualization of the vascular structure at predefined depths based on the detection of the blood movement through the retinal vasculature. In this way, OCT-A images constitute a suitable scenario to analyze the retinal vascular properties of regions of interest as is the case of the macular area, measuring the characteristics of the foveal vascular and avascular zones. Extracted parameters of this region can be used as prognostic factors that determine if the patient suffers from certain pathologies (such as diabetic retinopathy or retinal vein occlusion, among others), indicating the associated pathological degree. The manual extraction of these biomedical parameters is a long, tedious and subjective process, introducing a significant intra and inter-expert variability, which penalizes the utility of the measurements. In addition, the absence of tools that automatically facilitate these calculations encourages the creation of computer-aided diagnosis frameworks that ease the doctor’s work, increasing their productivity and making viable the use of this type of vascular biomarkers. In this work we propose a fully automatic system that identifies and precisely segments the region of the foveal avascular zone (FAZ) using a novel ophthalmological image modality as is OCT-A. The system combines different image processing techniques to firstly identify the region where the FAZ is contained and, secondly, proceed with the extraction of its precise contour. The system was validated using a representative set of 213 healthy and diabetic OCT-A images, providing accurate results with the best correlation with the manual measurements of two experts clinician of 0.93 as well as a Jaccard’s index of 0.82 of the best experimental case in the experiments with healthy OCT-A images. The method also provided satisfactory results in diabetic OCT-A images, with a best correlation coefficient with the manual labeling of an expert clinician of 0.93 and a Jaccard’s index of 0.83. This tool provides an accurate FAZ measurement with the desired objectivity and reproducibility, being very useful for the analysis of relevant vascular diseases through the study of the retinal micro-circulation.
In this work, we have developed a computer-aided diagnosis system, based on a two-level artificial neural network (ANN) architecture. This was trained, tested, and evaluated specifically on the problem of detecting lung cancer nodules found on digitized chest radiographs. The first ANN performs the detection of suspicious regions in a low-resolution image. The input to the second ANN are the curvature peaks computed for all pixels in each suspicious region. This comes from the fact that small tumors possess and identifiable signature in curvature-peak feature space, where curvature is the local curvature of the image data when viewed as a relief map. The output of this network is thresholded at a chosen level of significance to give a positive detection. Tests are performed using 60 radiographs taken from routine clinic with 90 real nodules and 288 simulated nodules. We employed free-response receiver operating characteristics method with the mean number of false positives (FP's) and the sensitivity as performance indexes to evaluate all the simulation results. The combination of the two networks provide results of 89%-96% sensitivity and 5-7 FP's/image, depending on the size of the nodules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.