In this work, we have developed a computer-aided diagnosis system, based on a two-level artificial neural network (ANN) architecture. This was trained, tested, and evaluated specifically on the problem of detecting lung cancer nodules found on digitized chest radiographs. The first ANN performs the detection of suspicious regions in a low-resolution image. The input to the second ANN are the curvature peaks computed for all pixels in each suspicious region. This comes from the fact that small tumors possess and identifiable signature in curvature-peak feature space, where curvature is the local curvature of the image data when viewed as a relief map. The output of this network is thresholded at a chosen level of significance to give a positive detection. Tests are performed using 60 radiographs taken from routine clinic with 90 real nodules and 288 simulated nodules. We employed free-response receiver operating characteristics method with the mean number of false positives (FP's) and the sensitivity as performance indexes to evaluate all the simulation results. The combination of the two networks provide results of 89%-96% sensitivity and 5-7 FP's/image, depending on the size of the nodules.
Dry eye is a symptomatic disease which affects a wide range of population and has a negative impact on their daily activities. Its diagnosis can be achieved by analyzing the interference patterns of the tear film lipid layer and by classifying them into one of the Guillon categories. The manual process done by experts is not only affected by subjective factors but is also very time consuming. In this paper we propose a general methodology to the automatic classification of tear film lipid layer, using color and texture information to characterize the image and feature selection methods to reduce the processing time. The adequacy of the proposed methodology was demonstrated since it achieves classification rates over 97% while maintaining robustness and provides unbiased results. Also, it can be applied in real time, and so allows important time savings for the experts.
Dry eye syndrome is recognized as a growing health problem, and one of the most frequent reasons for seeking eye care. Its etiology and management challenge clinicians and researchers alike, and several clinical tests can be used to diagnose it. One of the most frequently used tests is the evaluation of the interference patterns of the tear film lipid layer. Based on this clinical test, this paper presents CASDES, a computer-aided system to support the diagnosis of dry eye syndrome. Furthermore, CASDES is also useful to support the diagnosis of other eye diseases, such as meibomian gland dysfunction, since it provides a tear film map with highly useful information for eye practitioners. Experiments demonstrate the robustness of this novel tool, which outperforms the previous attempts to create tear film maps and provides reliable results in comparison with the clinicians' annotations. Note that the processing time is noticeably reduced with the proposed method, which will help to promote its clinical use in the diagnosis and treatment of dry eye.
This work describes a computational scheme for automatic detection of suspected lung nodules in a chest radiograph. A knowledge-based system extracts the lung masks over which we will apply the nodule detection process. First we obtain the normalized cross-correlation image. Next we detect suspicious regions by assuming a threshold. We examine the suspicious regions using a variable threshold which results in the growth of the suspicious areas and an increase in false positives. We reduce the large number of false positives by applying the facet model to the suspicious regions of the image. An algorithmic classification process gives a confidence factor that a suspicious region is a nodule. Five chest images containing 30 known nodules were used as a training set. We evaluated the system by analyzing 30 chest images with 40 confirmed nodules of varying contrast and size located in various parts of the lungs. The system detected 100% of the nodules with a mean of six false positives per image. The accuracy and specificity were 96%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.