A specimen of angular roughshark Oxynotus centrina has been kept successfully in captivity for the first time. Over a period of 24 months, the specimen preyed exclusively on the contents of elasmobranch egg cases, suggesting a specialized trophic niche.
There are numerous reports of billfishes spearing objects, marine organisms, and even humans. Whether or not this behaviour is intentional and, if so, what is its functional meaning, are open questions. In 2016, an adult blue shark (Prionace glauca) was found to be killed by a juvenile swordfish (Xiphias gladius) in the western Mediterranean. Here we report on three more recent cases involving both species in the same area. In February 2017, an adult male blue shark was found stranded in Garrucha (Spain) with a fragment of a juvenile swordfish’s rostrum (18cm long x 2cm wide at proximal end) inserted in its cranium. In March 2017, an adult pregnant female blue shark was stranded alive on the coast of Ostia (Italy) but died shortly afterwards; a fragment of a juvenile swordfish’s rostrum (25x3cm) was found allocated between the eye and the cranium. Finally, in February 2018, an adult female blue shark appeared stranded in the coast of Vera (Spain), with a putative impalement injury anterior to the right eye but without an associated bill fragment. Surprisingly, X-ray and computed tomography revealed an older injury in the right nostril, with a small piece of a juvenile swordfish’s rostrum (5.3x1.2cm). These cases suggest that juvenile swordfish would drive their rostrum into blue sharks as a defensive strategy that is likely to be far from anecdotal. We suggest that no regular cases of these interactions are reported because they occur at high sea and evidence of them, when available, can easily be overlooked.
Elasmobranchs are one of the most endangered vertebrate groups on the planet, but despite this situation the use of reproductive techniques in elasmobranch conservation strategies has been scarce. Among these techniques, sperm preservation is a potential tool for ex situ conservation and aquaria sustainability. However, there are no widespread preservation protocols for elasmobranch sperm, and shark sperm cryopreservation has never been achieved before. Here we present the establishment of successful cryopreservation protocols for elasmobranch sperm, tested in several species. We have formulated a sperm extender that can be used for different elasmobranch species, capable of maintaining sperm motility for several weeks. Additionally, we achieved the cryopreservation of sperm by previously diluting it in our extender and supplementing it with different combinations of cryoprotectants. The effects of methanol and dimethyl sulfoxide as permeating cryoprotectants were evaluated, as well egg yolk as a non-permeating cryoprotectant. Sperm quality was assessed by studying the motility and membrane integrity post-thawing, demonstrating its effectiveness in the 10 species tested, including two which are considered Critically Endangered. This is the first time that shark sperm cryopreservation has been reported, broadening our knowledge of the reproductive techniques that can be applied to elasmobranchs and laying the foundations for the first cryobanks for shark and ray sperm. Outcomes from this study will be useful for ex situ conservation efforts developed by public aquaria. A regular supply of frozen sperm will reduce the problems that result from the transport of specimens, inbreeding or lack of synchronized reproductive cycles in captivity.
The chondrichthyan fishes, which comprise sharks, rays, and chimaeras, are one of the most threatened groups of vertebrates on the planet. Given this situation, an additional strategy for the protection of these species could be the ex situ conservation projects developed in public aquaria and research centers. Nevertheless, to increase sustainability and to develop properly in situ reintroduction strategies, captive breeding techniques, such as sperm extraction and artificial insemination, should be developed. These techniques are commonly used in other threatened species and could be also used in chondrichthyans. However, the different reproductive morphologies found in this group can complicate both processes. Therefore, a comparison of the reproductive anatomy of eight distinct chondrichthyans, with an emphasis on those important differences when performing sperm extraction or artificial insemination, is carried out herein. Sharks and chimaeras belonging to the Scyliorhinidae, Carcharhinidae, Centrophoridae, Etmopteridae, Hexanchidae, and Chimaeridae families were obtained from commercial fisheries, public aquaria, and stranding events. In addition, the process of obtaining viable sperm samples through cannulation, abdominal massage, and oviducal gland extraction is described in detail for both living and dead animals.
The superorder Batoidea (rays, skates, and relatives), constitutes one of the most threatened group of vertebrates. Strengthening ex situ conservation programs developed in research centers and public aquaria could be a way of addressing this situation. However, captive breeding programs must be improved to prevent the capture of wild animals and to develop proper in situ reintroduction strategies. Sperm extraction and artificial insemination are two techniques commonly used in other threatened species, which could also be used in rays and the like. However, the different reproductive morphologies present within this group of animals may hamper both processes. Here, we present a comparison of the reproductive anatomies of 11 distinct batoid species, emphasizing the important differences between the species when performing sperm extraction or artificial insemination. Both male and female animals, belonging to the Rajidae, Dasyatidae, Torpedinidae and Myliobatidae families, from the Mediterranean Sea were studied. In addition, we describe the procedure to extract sperm using both cannulation and abdominal massage, either from live or dead batoids Finally, the obtention of motile sperm recovered from the oviducal gland of females is described. These techniques generate a new range of possibilities for the conservation of these threatened species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.