Turnip mosaic virus (TuMV) infections affect many Arabidopsis developmental traits. This paper analyzes, at different levels, the development-related differential alterations induced by different strains of TuMV, represented by isolates UK 1 and JPN 1. The genomic sequence of JPN 1 TuMV isolate revealed highest divergence in the P1 and P3 viral cistrons, upon comparison with the UK 1 sequence. Infectious viral chimeras covering the whole viral genome uncovered the P3 cistron as a major viral determinant of development alterations, excluding the involvement of the PIPO open reading frame. However, constitutive transgenic expression of P3 in Arabidopsis did not induce developmental alterations nor modulate the strong effects induced by the transgenic RNA silencing suppressor HC-Pro from either strain. This highlights the importance of studying viral determinants within the context of actual viral infections. Transcriptomic and interactomic analyses at different stages of plant development revealed large differences in the number of genes affected by the different infections at medium infection times but no significant differences at very early times. Biological functions affected by UK 1 (the most severe strain) included mainly stress response and transport. Most cellular components affected cell-wall transport or metabolism. Hubs in the interactome were affected upon infection.
Virus-free garlic plants, when planted in the field, are quickly infected by viruses, but it is not known to what extent this affects the yield over successive crop cycles. The yield loss curve was studied for these plants during 5 years of tests in the field. Highly significant differences were detected in the weight and perimeter of bulbs in relation to the years of exposure to virus infection. An increase was observed in yield compared with chronically diseased plants of between 66 and 216% in weight and 13 and 37% in perimeter of bulbs in the first crop cycle and 49% in weight and 16% in perimeter in the fifth year. These results showed a gradual loss in yield until the third year, and subsequently the production values remained steady for the fourth and fifth years of testing but were still higher than those reached by chronically diseased plants.
Garlic plants (Allium sativum) are naturally infected by a complex of viruses in the genera Potyvirus, Carlavirus, and Allexivirus. The yield of virus-free garlic plants (noninoculated control) was compared with that of plants infected with an Argentinean isolate of Leek yellow stripe virus (LYSV; L treatment) and garlic plants infected with the virus complex (VC). Evaluations were conducted in the field and in anti-aphid cages during two crop cycles after planting three sizes of cloves (categories). The percent plant emergence in the noninoculated control and in the L treatments (between 80 and 100%) did not differ statistically, but the percent emergence for these two treatments was double that for the VC treatment (25 to 62%). Plant height and leaf number in the L treatment were lower than in the noninoculated control during the first evaluation (year 1), but they did not differ during the second evaluation (year 2). However, both treatments produced taller plants with more leaves than those of VC in both years. The L treatment decreased bulb weight up to 28% and perimeter up to 9% when compared with those in the noninoculated control maintained in the anti-aphid cages until the end of the experiment. However, differences between these treatments were higher in the field experiments where plants were exposed to infection by other viruses (up to 36% in bulb weight and 13% in perimeter). Bulbs of the VC-infected plant treatment were reduced up to 74% in weight and 37% in perimeter. In field evaluations, a high percentage of plants were infected with Onion yellow dwarf virus (58 to 100%), whereas fewer were infected with LYSV (15 to 68%). Garlic virus A infection was high in plants previously infected with LYSV (96 and 97%), but lower in the noninoculated control (12 and 68%). These results show the high impact of the virus complex on garlic yield and the effect of LYSV as a component of the garlic virus complex.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.