Goal-directed behavior requires cognitive control of action, putatively by means of frontal-lobe impact on posterior brain areas. We investigated frontoparietal directed interaction (DI) in monkeys during memory-guided rule-based reaches, to test if DI supports motor-goal selection or working memory (WM) processes. We computed DI between the parietal reach region (PRR) and dorsal premotor cortex (PMd) with a Granger-causality measure of intracortical local field potentials (LFP). LFP mostly in the beta (12–32 Hz) and low-frequency (f≤10Hz) ranges contributed to DI. During movement withholding, beta-band activity in PRR had a Granger-causal effect on PMd independent of WM content. Complementary, low-frequency PMd activity had a transient Granger-causing effect on PRR specifically during WM retrieval of spatial motor goals, while no DI was associated with preliminary motor-goal selection. Our results support the idea that premotor and posterior parietal cortices interact functionally to achieve cognitive control during goal-directed behavior, in particular, that frontal-to-parietal interaction occurs during retrieval of motor-goal information from spatial WM.
The depth of anesthesia is commonly assessed in clinical practice by the patient’s clinical signs. However, during cardiopulmonary bypass and hypothermia, common symptoms of nociception such as tachycardia, hypertension, sweating, or movement have low sensitivity and specificity in the description of the patient nociception and hypnosis, in particular, detecting nociceptive stimuli. Better monitoring of the depth of analgesia during hypothermia under cardiopulmonary bypass will avoid underdosage or overdosage of analgesia, especially opioids. Induced hypothermia has a multifactorial effect on the level of analgesia and hypnosis. Thermoregulatory processes appear essential for the activation of analgesic mechanisms, ranging from a physiological strong negative affiliation between nerve conduction velocity and temperature, until significant repercussions on the pharmacological dynamics of the analgesic drugs, the latter decreasing the clearance rate with a subsequent increase in the effect-site concentrations. Under the hypothesis that deep hypothermia induces massive effects on the analgesia and hypnosis levels of the patient, we studied whether hypothermia effects were mirrored by several neuromonitoring indices: two hypnosis indices, consciousness index and bispectral index, and a novel nociception index designed to evaluate the analgesic depth. In this clinical trial, 39 patients were monitored during general anesthesia with coronary atherosclerosis cardiopathy who were elective for on-pump coronary artery bypass graft surgery under hypothermia. The changes and correlation between the consciousness index, bispectral index, and nociception index with respect to the temperature were compared in different timepoints at basic state, during cardiopulmonary bypass and after cardiopulmonary bypass. While the three neuromonitoring indices showed significant correlations with respect to the temperature, the nociception index and consciousness index showed the strongest sensitivities, indicating that these two indices could be an important means of intraoperative neuromonitoring during induced hypothermia under cardiopulmonary bypass.
Chakrabarti S, Martinez-Vazquez P, Gail A. Synchronization patterns suggest different functional organization in parietal reach region and dorsal premotor cortex. J Neurophysiol 112: 3138-3153, 2014. First published September 17, 2014 doi:10.1152/jn.00621.2013.-The parietal reach region (PRR) and dorsal premotor cortex (PMd) form part of the fronto-parietal reach network. While neural selectivity profiles of single-cell activity in these areas can be remarkably similar, other data suggest that both areas serve different computational functions in visually guided reaching. Here we test the hypothesis that different neural functional organizations characterized by different neural synchronization patterns might be underlying the putatively different functional roles. We use cross-correlation analysis on single-unit activity (SUA) and multiunit activity (MUA) to determine the prevalence of synchronized neural ensembles within each area. First, we reliably find synchronization in PRR but not in PMd. Second, we demonstrate that synchronization in PRR is present in different cognitive states, including "idle" states prior to task-relevant instructions and without neural tuning. Third, we show that local field potentials (LFPs) in PRR but not PMd are characterized by an increased power and spike field coherence in the beta frequency range (12-30 Hz), further indicating stronger synchrony in PRR compared with PMd. Finally, we show that neurons with similar tuning properties tend to be correlated in their random spike rate fluctuations in PRR but not in PMd. Our data support the idea that PRR and PMd, despite striking similarity in single-cell tuning properties, are characterized by unequal local functional organization, which likely reflects different network architectures to support different functional roles within the fronto-parietal reach network.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.