Pathological gambling is an impulse control disorder reported in association with dopamine agonists used to treat Parkinson's disease. Although impulse control disorders are conceptualized as lying within the spectrum of addictions, little neurobiological evidence exists to support this belief. Functional imaging studies have consistently demonstrated abnormalities of dopaminergic function in patients with drug addictions, but to date no study has specifically evaluated dopaminergic function in Parkinson's disease patients with impulse control disorders. We describe results of a [(11)C] raclopride positron emission tomography (PET) study comparing dopaminergic function during gambling in Parkinson's disease patients, with and without pathological gambling, following dopamine agonists. Patients with pathological gambling demonstrated greater decreases in binding potential in the ventral striatum during gambling (13.9%) than control patients (8.1%), likely reflecting greater dopaminergic release. Ventral striatal bindings at baseline during control task were also lower in patients with pathological gambling. Although prior imaging studies suggest that abnormality in dopaminergic binding and dopamine release may be markers of vulnerability to addiction, this study presents the first evidence of these phenomena in pathological gambling. The emergence of pathological gambling in a number of Parkinson's disease patients may provide a model into the pathophysiology of this disorder.
Positron emission tomography (PET) findings suggesting lower D2-type dopamine receptors and dopamine concentration in brains of stimulant users have prompted speculation that increasing dopamine signaling might help in drug-treatment. However, this strategy needs to consider the possibility, based on animal and postmortem human data, that dopaminergic activity at the related D3 receptor might, in contrast, be elevated, and thereby contribute to drug-taking behavior. We tested the hypothesis that D3 receptor binding is above-normal in methamphetamine (MA) polydrug users, using PET and the D3-preferring ligand [11C]-(+)-PHNO. Sixteen control subjects and 16 polydrug users reporting MA as their primary drug of abuse underwent PET scanning following [11C]-(+)-PHNO. Compared to control subjects, drug users had higher [11C]-(+)-PHNO binding in the D3-rich midbrain substantia nigra (SN, +46%, p<0.02) and in the globus pallidus (+9%, p=0.06) and ventral pallidum (+11%, p=0.1), whereas binding was slightly lower in the D2-rich dorsal striatum (~−4%, NS; −12% in heavy users, p=0.01) and related to drug-use severity. [11C]-(+)-PHNO binding ratio in D3-rich SN vs. D2-rich dorsal striatum was 55% higher in MA users (p=0.004), with heavy but not moderate users having ratios significantly different from controls. [11C]-(+)-PHNO binding in SN was related to self-reported “drug-wanting.” We conclude that the dopamine D3 receptor, unlike the D2 receptor, might be upregulated in brains of MA polydrug users although lower dopamine levels in MA users could have contributed to the finding. Pharmacological studies are needed to establish whether normalization of D3 receptor function could reduce vulnerability to relapse in stimulant abuse.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.