Highlights d TIS-profiling reveals widespread translation of non-canonical ORFs in budding yeast d Production of non-AUG-initiated extended isoforms is prevalent and inefficient d A small subset of possible near-cognate sites is used for translation initiation d eIF5A-based regulation allows conditional unmasking of non-AUG initiation in meiosis
In this study, we report that a 17-nucleotide independently folding RNA G-quadruplex (GQ) domain within the 294-nucleotide human VEGF IRES A interacts with the 40S ribosomal subunit. Footprinting and structure mapping analyses indicate that the RNA GQ forms independently and interacts directly with the 40S ribosomal subunit in the absence of other protein factors. Moreover, a filter binding assay in conjunction with enzymatic footprinting clearly established that the GQ-forming domain singularly dictates the binding affinity and also the function of internal ribosomal entry site (IRES) A. The deletion of the GQ domain abrogates the binding of the 40S ribosomal subunit to the IRES, which impairs cap-independent translation initiation. The findings provide a unique and defined role for a noncanonical RNA structure in cap-independent translation initiation by cellular IRESs. The GQ structure when present in an IRES acts as an essential element in contrast to their generally accepted inhibitory role in translation. The results of this study explain the hitherto unknown mechanistic necessity of the GQ structure in IRES function.
Protein synthesis is a crucial but metabolically costly biological process that must be tightly coordinated with cellular needs and nutrient availability. In response to environmental stress, translation initiation is modulated to control protein output while meeting new demands. The cap-binding protein eIF4E—the earliest contact between mRNAs and the translation machinery—serves as one point of control, but its contributions to mRNA-specific translation regulation remain poorly understood. To survey eIF4E-dependent translational control, we acutely depleted eIF4E and determined how this impacts protein synthesis. Despite its essentiality, eIF4E depletion had surprisingly modest effects on cell growth and protein synthesis. Analysis of transcript- level changes revealed that long-lived transcripts were downregulated, likely reflecting accelerated turnover. Paradoxically, eIF4E depletion led to simultaneous upregulation of genes involved in catabolism of aromatic amino acids, which arose as secondary effects of reduced protein biosynthesis on amino acid pools, and genes involved in the biosynthesis of amino acids. These futile cycles of amino acid synthesis and degradation were driven, in part, by translational activation of GCN4, a transcription factor typically induced by amino acid starvation. Furthermore, we identified a novel regulatory mechanism governing translation of PCL5, a negative regulator of Gcn4, that provides a consistent protein-to-mRNA ratio under varied translation environments. This translational control was partial dependent on a uniquely long poly-(A) tract in the PCL5 5′ UTR and on poly-(A) binding protein. Collectively, these results highlight how eIF4E connects translation to amino acid homeostasis and stress responses and uncovers new mechanisms underlying how cells tightly control protein synthesis during environmental challenges.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.