Through litter decomposition enormous amounts of carbon is emitted to the atmosphere. Numerous large-scale decomposition experiments have been conducted focusing on this fundamental soil process in order to understand the controls on the terrestrial carbon transfer to the atmosphere. However, previous studies were mostly based on site-specific litter and methodologies, adding major uncertainty to syntheses, comparisons and meta-analyses across different experiments and sites. In the TeaComposition initiative, the potential litter decomposition is investigated by using standardized substrates (Rooibos and Green tea) for comparison of litter mass loss at 336 sites (ranging from -9 to +26 °C MAT and from 60 to 3113 mm MAP) across different ecosystems. In this study we tested the effect of climate (temperature and moisture), litter type and land-use on early stage decomposition (3 months) across nine biomes. We show that litter quality was the predominant controlling factor in early stage litter decomposition, which explained about 65% of the variability in litter decomposition at a global scale. The effect of climate, on the other hand, was not litter specific and explained <0.5% of the variation for Green tea and 5% for Rooibos tea, and was of significance only under unfavorable decomposition conditions (i.e. xeric versus mesic environments). When the data were aggregated at the biome scale, climate played a significant role on decomposition of both litter types (explaining 64% of the variation for Green tea and 72% for Rooibos tea). No significant effect of land-use on early stage litter decomposition was noted within the temperate biome. Our results indicate that multiple drivers are affecting early stage litter mass loss with litter quality being dominant. In order to be able to quantify the relative importance of the different drivers over time, long-term studies combined with experimental trials are needed.
In 2017 and 2018, wildfires in California burned millions of hectares and caused billions of dollars in structure damages. This paper puts these recent fires in a long-term historical context by assembling four decades of data on wildfires in California. We combine administrative data of structure loss due to wildfire with economic data on replacement costs and spatial data on fire locations and sizes. We find that over the period 1979–2018, wildfires in California have been getting larger and that the trend is accelerating. This same trend is seen in the wildland–urban interface. As well, total structure damage from wildfires has grown steadily during the past four decades. Our conclusion is that the recent California fires are not an anomaly, but rather part of a trend towards larger and increasingly destructive wildfires.
Introduction: Nitrogen enrichment of coastal salt marshes can induce feedbacks that alter ecosystem-level processes including primary production and carbon sequestration. Despite the rising interest in coastal blue carbon, the effects of chronic nutrient enrichment on blue carbon processes have rarely been measured in the context of experimental fertilization. Here, we examined the ecosystem-level effects of nitrate (NO 3 −) enrichment on the greenhouse gas dynamics of a Spartina alterniflora-dominated salt marsh. We measured CO 2 and CH 4 fluxes using static chambers through two growing seasons in a salt marsh that was nitrogen-enriched for 13 years and compared fluxes to those from a reference marsh. Outcomes: We found that nitrogen enrichment increased gross primary productivity (GPP) by 7.7% and increased ecosystem respiration (R eco) by 20.8%. However, nitrogen enrichment had no discernible effect on net ecosystem exchange (NEE). Taken together, these results suggest that nitrogen-induced stimulation of R eco could transform this salt marsh from a carbon sink into a source of carbon to the atmosphere. Conclusion: Our results complement prior findings of nitrogen enrichment weakening soil structure and organic matter stability in tidal salt marshes, suggesting that increased nutrient inputs have the potential to alter the carbon storage function of these ecosystems through enhanced microbial respiration of previously sequestered carbon.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.