A pilot-scale experiment of natural rubber processing wastewater treatment was conducted using a combination system consisting of a two-stage up-flow anaerobic sludge blanket (UASB) and a down-flow hanging sponge (DHS) reactor for more than 10 months. The system achieved a chemical oxygen demand (COD) removal efficiency of 95.7% ± 1.3% at an organic loading rate of 0.8 kg COD/(m(3).d). Bacterial activity measurement of retained sludge from the UASB showed that sulfate-reducing bacteria (SRB), especially hydrogen-utilizing SRB, possessed high activity compared with methane-producing bacteria (MPB). Conversely, the acetate-utilizing activity of MPB was superior to SRB in the second stage of the reactor. The two-stage UASB-DHS system can reduce power consumption by 95% and excess sludge by 98%. In addition, it is possible to prevent emissions of greenhouse gases (GHG), such as methane, using this system. Furthermore, recovered methane from the two-stage UASB can completely cover the electricity needs for the operation of the two-stage UASB-DHS system, accounting for approximately 15% of the electricity used in the natural rubber manufacturing process.
In this study, the performance of a proposed treatment system consisting of an anaerobic process (acidification, methane fermentation) and an aerobic process (trickling filter) was evaluated for treating high concentrations of molasses-based wastewater (43-120 gCOD/L) by a continuous flow experiment. An anaerobic up-flow staged sludge bed (USSB) reactor, equipped with multiple gas solid separators, was used as the main treatment/methane recovery process. The USSB showed good efficiency of both COD removal (80-87%) and methane recovery (70-80%) at an organic loading rate of 11-43 kgCOD/m(3) day. As the influent COD concentration was increased, the organic loading rate for stable operation of the USSB was reduced due to cation inhibition. However, the COD removal efficiency of the whole treatment system (including the aerobic post-treatment process) was 96% even at an influent COD concentration of 120 gCOD/L. Use of the treated wastewater as a fertilizer and/or irrigation-water for sugarcane was evaluated by a field cultivation test. Both growth of sugarcane and emission of greenhouse gases from the field soil were measured. A relatively high methane flux (352 μgCH4/m(2) h) was observed when the treated wastewater from day 0 was used. By day 3, however, this value was reduced to the same level as the control. In addition, growth of sugarcane was satisfactory when the treated wastewater was used. The treated wastewater was found to be useful for cultivation of sugarcane in terms of both a low risk of greenhouse gas emission from the field soil and effectiveness for growth of sugarcane.
This study was designed to evaluate a treatment system for high strength wastewater (vinasse) from a sugarcane molasses-based bio-ethanol plant in Thailand. A laboratory-scale two-phase treatment system composed of a sulfate reducing (SR) tank and multi-staged up-flow anaerobic sludge blanket (MS-UASB) reactor was used as the pre-treatment unit. Conventional UASB and down-flow hanging sponge (DHS) reactors were used as the post-treatment unit. The treatment system was operated for 300 days under ambient temperature conditions (24.6-29.6 °C). The hydraulic retention time (HRT) in each unit was kept at 25 h for the two-phase system and 23 h for the UASB&DHS. The influent concentration was allowed to reach up to 15,000 mg chemical oxygen demand (COD)/L. COD removal efficiency (based on influent COD) of the two-phase MS-UASB and the UASB&DHS was 54.9 and 18.7%, respectively. Due to the effective removal of sulfide in the SR tank, the MS-UASB achieved a high methane conversion ratio of up to 97%. In DHS, nitrification occurred at the outside portion of the sponge media while denitrification occurred at the inside. Consequently, 27% of the total nitrogen (TN) was removed. An amount of 32% of residual nitrogen (28 mgN/L) was in the form of nitrate, a better nitrogen state for fertilizer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.