The usage of non-wood pulps in furnishes for the production of various paper grades is a real alternative for the substitution of wood pulp in papermaking. In terms of the papermaking process, the main limiting factor for non-wood pulp utilization is poor dewatering. This problem can be partially solved by means of retention aids, and the modern microparticle-based retention aids are very promising for this application. In this study the main aim was to characterize how the microparticle retention systems affect the retention, dewatering, and formation of a non-wood pulp furnish and how these effects and mechanisms differ when compared to normal wood pulp. The performance of several commercially available retention aids was studied by making dynamic sheet forming tests for reference and an organosolv wheat straw furnish. The emphasis in the experiments was on drainage enhancement. The maximum drainage gain obtained with the bentonite-CPAM retention aid system was about 5%. Despite the improved drainage, dewatering of the reference furnish was better than for the non-wood containing furnish.
The wide availability of wheat straw makes it a promising raw material for various fiber products, but its heterogeneity makes it a challenging material to use. In addition to reducing paper properties, some cell types cause processing problems such as silicate deposition and poor dewatering. The aims of this work were to examine the fractionation tendency of wheat straw pulp cells in flotation and to determine the effect of fractionation on paper strength properties. A cell type categorization based on automatic optical fiber analysis was used to assess fractionation. The results showed that epidermal cells can be selectively enriched from unbleached wheat straw pulp by flotation and other short cells had a tendency to become enriched in the overflow fraction. The underflow fraction
consisted mostly of fibrous material, as well as vessel elements and long parenchyma cells. Removal of the epidermal cells from pulp will reduce its silicate content and improve the strength properties of the paper.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.