This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
The clay mineralogy of sediments related to the marine Mjølnir impact craterA core recovered from the central high within the crater contains slump and avalanche deposits from the collapse of the transient crater and central high. These beds are overlain by gravity flow conglomerates, with laminated shales and marls on top. Here, impact and post-impact deposits in this core are studied with focus on clay mineralogy obtained from XRD decomposition and simulation analysis methods. The clay-sized fractions are dominated by kaolinite, illite, mixed-layered clay minerals and quartz. Detailed analyses showed rather similar composition throughout the core, but some noticeable differences were detected, including varying crystal size of kaolinite and different types of illites and illite/smectite. These minerals may have been formed by diagenetic changes in the more porous/fractured beds in the crater compared to time-equivalent beds outside the crater rim.Long-term post-impact changes in clay mineralogy are assumed to have been minor, due to the shallow burial depth and minor thermal influence from impact-heated target rocks. Instead, the clay mineral assemblages, especially the abundance of chlorite, reflect the impact and post-impact reworking of older material. Previously, an ejecta layer (the Sindre Bed) was recognized in a nearby well outside the crater, represented by an increase in smectite-rich clay minerals, genetically equivalent to the smectite occurring in proximal ejecta deposits of the Chicxulub crater. Such alteration products from impact glasses were not detected in this study, indicating that little, if any, impact glass was deposited within the upper part of the crater fill. Crater-fill deposits inherited their mineral composition from Triassic and Jurassic sediments underlying the impact site.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.