In light of the current COVID-19 pandemic, there is an urgent need to accurately infer the evolutionary and transmission history of the virus to inform real-time outbreak management, public health policies and mitigation strategies. Current phylogenetic and phylodynamic approaches typically use consensus sequences, essentially assuming the presence of a single viral strain per host. Here, we analyze 621 bulk RNA sequencing samples and 7,540 consensus sequences from COVID-19 patients, and identify multiple strains of the virus, SARS-CoV-2, in four major clades that are prevalent within and across hosts. In particular, we find evidence for (i) within-host diversity across phylogenetic clades, (ii) putative cases of recombination, multi-strain and/or superinfections as well as (iii) distinct strain profiles across geographical locations and time. Our findings and algorithms will facilitate more detailed evolutionary analyses and contact tracing that specifically account for within-host viral diversity in the ongoing COVID-19 pandemic as well as future pandemics.
CRISPR-Cas9 based genome editing combined with single-cell sequencing enables the tracing of the history of cell divisions, or cellular lineage, in tissues and whole organisms. While standard phylogenetic approaches may be applied to reconstruct cellular lineage trees from this data, the unique features of the CRISPR-Cas9 editing process motivate the development of specialized models that describe the evolution of CRISPR-Cas9 induced mutations. Here, we introduce the star homoplasy model, a novel evolutionary model that constrains a phylogenetic character to mutate at most once along a lineage, capturing the non-modifiability property of CRISPR-Cas9 mutations. We derive a combinatorial characterization of star homoplasy phylogenies by identifying a relationship between the star homoplasy model and the binary perfect phylogeny model. We use this characterization to develop an algorithm, Startle (Star tree lineage estimator), that computes a maximum parsimony star homoplasy phylogeny. We demonstrate that Startle infers more accurate phylogenies on simulated CRISPR-based lineage tracing data compared to existing methods; particularly on data with high amounts of dropout and homoplasy. Startle also infers more parsimonious phylogenies with fewer metastatic migrations on a lineage tracing dataset from mouse metastatic lung adenocarcinoma.
Monitoring the introduction and prevalence of variants of concern (VOCs) and variants of interest (VOIs) in a community can help the local authorities make informed public health decisions. PCR assays can be designed to keep track of SARS-CoV-2 variants by measuring unique mutation markers that are exclusive to the target variants.
Background: Technological advances in genomic sequencing are facilitating the reconstruction of transmission histories during outbreaks in the fight against infectious diseases. However, accurate disease transmission inference using this data is hindered by a number of challenges due to within-host pathogen diversity and weak transmission bottlenecks, where multiple genetically-distinct pathogenic strains co-transmit. Results: We formulate a combinatorial optimization problem for transmission network inference under a weak bottleneck from a given timed phylogeny and establish hardness results. We present SharpTNI, a method to approximately count and almost uniformly sample from the solution space. Using simulated data, we show that SharpTNI accurately quantifies and uniformly samples from the solution space of parsimonious transmission networks, scaling to large datasets. We demonstrate that SharpTNI identifies co-transmissions during the 2014 Ebola outbreak that are corroborated by epidemiological information collected by previous studies. Conclusions: Accounting for weak transmission bottlenecks is crucial for accurate inference of transmission histories during outbreaks. SharpTNI is a parsimony-based method to reconstruct transmission networks for diseases with long incubation times and large inocula given timed phylogenies. The model and theoretical work of this paper pave the way for novel maximum likelihood methods to co-estimate timed phylogenies and transmission networks under a weak bottleneck.
Motivation While single-cell DNA sequencing (scDNA-seq) has enabled the study of intratumor heterogeneity at an unprecedented resolution, current technologies are error-prone and often result in doublets where two or more cells are mistaken for a single cell. Not only do doublets confound downstream analyses, but the increase in doublet rate is also a major bottleneck preventing higher throughput with current single-cell technologies. Although doublet detection and removal are standard practice in scRNA-seq data analysis, options for scDNA-seq data are limited. Current methods attempt to detect doublets while also performing complex downstream analyses tasks, leading to decreased efficiency and/or performance. Results We present doubletD, the first standalone method for detecting doublets in scDNA-seq data. Underlying our method is a simple maximum likelihood approach with a closed-form solution. We demonstrate the performance of doubletD on simulated data as well as real datasets, outperforming current methods for downstream analysis of scDNA-seq data that jointly infer doublets as well as standalone approaches for doublet detection in scRNA-seq data. Incorporating doubletD in scDNA-seq analysis pipelines will reduce complexity and lead to more accurate results. Availability and implementation https://github.com/elkebir-group/doubletD. Supplementary information Supplementary data are available at Bioinformatics online.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.