Summary Mitochondrial network remodeling between fused and fragmented states facilitates mitophagy, interaction with other organelles and metabolic flexibility. Aging is associated with a loss of mitochondrial network homeostasis, but cellular processes causally linking these changes to organismal senescence remain unclear. Here, we show that AMP-activated protein kinase (AMPK) and dietary restriction (DR) promote longevity in C. elegans via maintaining mitochondrial network homeostasis and functional coordination with peroxisomes to increase fatty acid oxidation (FAO). Inhibiting fusion or fission specifically blocks AMPK- and DR-mediated longevity. Strikingly however, preserving mitochondrial network homeostasis during aging by co-inhibition of fusion and fission is sufficient itself to increase lifespan, while dynamic network remodeling is required for intermittent fasting-mediated longevity. Finally, we show that increasing lifespan via maintaining mitochondrial network homeostasis requires FAO and peroxisomal function. Together these data demonstrate that mechanisms that promote mitochondrial homeostasis and plasticity can be targeted to promote healthy aging.
Mitochondria are organized in the cell in the form of a dynamic, interconnected network. Mitochondrial dynamics, regulated by mitochondrial fission, fusion, and trafficking, ensure restructuring of this complex reticulum in response to nutrient availability, molecular signals, and cellular stress. Aberrant mitochondrial structures have long been observed in aging and age‐related diseases indicating that mitochondrial dynamics are compromised as cells age. However, the specific mechanisms by which aging affects mitochondrial dynamics and whether these changes are causally or casually associated with cellular and organismal aging is not clear. Here, we review recent studies that show specifically how mitochondrial fission, fusion, and trafficking are altered with age. We discuss factors that change with age to directly or indirectly influence mitochondrial dynamics while examining causal roles for altered mitochondrial dynamics in healthy aging and underlying functional outputs that might affect longevity. Lastly, we propose that altered mitochondrial dynamics might not just be a passive consequence of aging but might constitute an adaptive mechanism to mitigate age‐dependent cellular impairments and might be targeted to increase longevity and promote healthy aging.
Glucagon-like peptide-1 (GLP-1) injected into the brain reduces food intake. Similarly, activation of preproglucagon (PPG) cells in the hindbrain which synthesize GLP-1, reduces food intake. However, it is far from clear whether this happens because of satiety, nausea, reduced reward, or even stress. Here we explore the role of the bed nucleus of the stria terminalis (BNST), an area involved in feeding control as well as stress responses, in GLP-1 responses.Using cre-expressing mice we visualized projections of NTS PPG neurons and GLP-1R-expressing BNST cells with AAV-driven Channelrhodopsin-YFP expression. The BNST displayed many varicose YFP+ PPG axons in the ventral and less in the dorsal regions. Mice which express RFP in GLP-1R neurons had RFP+ cells throughout the BNST with the highest density in the dorsal part, suggesting that PPG neuron-derived GLP-1 acts in the BNST. Indeed, injection of GLP-1 into the BNST reduced chow intake during the dark phase, whereas injection of the GLP-1 receptor antagonist Ex9 increased feeding. BNST-specific GLP-1-induced food suppression was less effective in mice on high fat (HF, 60%) diet, and Ex9 had no effect. Restraint stress-induced hypophagia was attenuated by BNST Ex9 treatment, further supporting a role for endogenous brain GLP-1. Finally, whole-cell patch clamp recordings of RFP+ BNST neurons demonstrated that GLP-1 elicited either a depolarizing or hyperpolarizing reversible response that was of opposite polarity to that under dopamine.Our data support a physiological role for BNST GLP-1R in feeding, and suggest complex cellular responses to GLP-1 in this nucleus.
We shows that women who received low maternal investment during fetal life, the primary period when the body's organs develop, develop a ‘fast’ life history strategy. This prioritizes reproduction (indicated by early menarche, higher body fatness) over somatic growth (adult height) and the ability to maintain healthy blood pressure.
Mitochondrial form and function are closely interlinked in homeostasis and aging. Inhibiting mitochondrial translation is known to increase lifespan in C. elegans, and is accompanied by a fragmented mitochondrial network. However, whether this link between mitochondrial translation and morphology is causal in longevity remains uncharacterized. Here, we show in C. elegans that disrupting mitochondrial network homeostasis by blocking fission or fusion synergizes with reduced mitochondrial translation to prolong lifespan and stimulate stress response such as the mitochondrial unfolded protein response, UPRMT. Conversely, immobilizing the mitochondrial network through a simultaneous disruption of fission and fusion abrogates the lifespan increase induced by mitochondrial translation inhibition. Furthermore, we find that the synergistic effect of inhibiting both mitochondrial translation and dynamics on lifespan, despite stimulating UPRMT, does not require it. Instead, this lifespan-extending synergy is exclusively dependent on the lysosome biogenesis and autophagy transcription factor HLH-30/TFEB. Altogether, our study reveals the mechanistic crosstalk between mitochondrial translation, mitochondrial dynamics, and lysosomal signaling in regulating longevity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.