Enhancing the deposition and permeation of 5-fluorouracil across human epidermis assisted by appropriately charged and well-defined peptide dendrimers was investigated. Peptide dendrimers with arginine as the terminal amino acid and having a range of terminal positive charges (4þ and 16 þ ) were synthesized by solid phase peptide synthesis. Various parameters including effect of peptide dendrimers on the solubility and partition coefficient of 5-FU, degradation of drug in skin as well as deposition and permeation of 5-FU in/through skin were studied. All the tested dendrimers increased the aqueous solubility and partition coefficient of 5-FU with each also significantly (p50.05) enhancing the deposition and permeation of 5-FU in/across human epidermis in a concentration-dependent manner. Of the three peptide dendrimers examined, R8 dendrimer (bearing 8 þ charge derived from four terminal arginines and MW of &1000 Da) showed greatest values for flux, Q 48 (cumulative amount of drug permeated at the end of 48 h) and amount of drug retained in human skin. Furthermore, this study also scrutinized and reports on the likely mechanisms by which peptide dendrimers act as transdermal permeation enhancers.
The objective of present work was to develop novel sunscreen creams containing polymeric nanoparticles (NPs) of morin. Polymeric NPs containing morin were prepared and optimized. The creams containing morin NPs were also prepared and evaluated. Optimized NPs exhibited particle size of 90.6 nm and zeta potential of −31 mV. The entrapment efficiency of morin, within the polymeric NPs, was found to be low (12.27%). Fourier transformed infrared spectroscopy and differential scanning calorimetry studies revealed no interaction between morin and excipients. Transmission electron microscopy and atomic force microscopy revealed that the NPs were spherical in shape with approximately 100 nm diameter. Optimized NPs showed excellent in vitro free radical scavenging activity. Skin permeation and deposition of morin from its NPs was higher than its plain form. Different sunscreen creams (SC1–SC8) were formulated by incorporating morin NPs along with nano zinc oxide and nano titanium dioxide. SC5 and SC8 creams showed excellent sun protection factor values (≈40). In vitro and in vivo skin permeation studies of sunscreen creams containing morin NPs indicated excellent deposition of morin within the skin. Morin NPs and optimized cream formulations (SC5 and SC8) did not exhibit cytotoxicity in Vero and HaCaT cells. Optimized sunscreen creams showed excellent dermal safety. SC5 and SC8 creams demonstrated exceptional in vivo antioxidant effect (estimation of catalase, superoxide dismutase, and glutathione) in UV radiation-exposed rats. The optimized sunscreen creams confirmed outstanding UV radiation protection as well as antioxidant properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.