Betulinic acid (BA), a pentacyclic triterpenoid, is gaining unmatched attention owing to its unique anti-cancer activity with selective melanoma growth inhibition without damaging normal cells. It is also well-known for its multifaceted pharmacokinetics, entailing antibacterial, antimalarial, anti-HIV and antioxidant merits. Considering the escalating demand with diminishing bioresource of this molecule, the present study was undertaken that revealed the untapped potentials of Ocimum calli, contrasting to that in the in vitro derived leaves, as effective production alternative of BA in three out of four tested species (i.e. Ocimum basilicum, Ocimum kilimandscharicum, Ocimum sanctum excluding Ocimum grattisimum). Callus inductions were obtained in all the four species with different 2,4-dichlorophenoxyacetic acid (2,4-D)/α-naphthaleneacetic acid (NAA) concentrations with kinetin. Notably, 2,4-D favoured maximum callus growth in all whereas NAA proved beneficial for the highest metabolite yield in the calli of each BA-producing species. The O. basilicum calli demonstrated the maximum growth (growth index (GI) 678.7 ± 24.47) and BA yield (2.59 ± 0.55 % dry weight [DW]), whereas those in O. kilimandscharicum (GI 533.33 ± 15.87; BA 1.87 ± 0.6 % DW) and O. sanctum (GI 448 ± 16.07; BA 0.39 ± 0.12 % DW) followed a descending order. The O. gratissimum calli revealed minimum growth (GI 159 ± 13.25) with no BA accumulation. Elicitation with methyl jasmonate at 200-μM concentration after 48-h exposure doubled the BA yield (5.10 ± 0.18 % DW) in NAA-grown O. basilicum calli compared to that in the untreated counterpart (2.61 ± 0.19 % DW), which further enthused its future application.
An endophytic fungus was isolated from the rhizomes of Curcuma amada (Zingiberaceae), which was identified as Fusarium oxysporum on the basis of its morphological and molecular characters. Chromatographic separation and spectroscopic analysis of the fungal metabolite (chloroform extract) led to the identification of one pure compound having molecular formula C5H12O2, i.e., 2,3-pentanediol (1). Activity analysis of compound 1 demonstrated improved antiaging (antioxidant, thermotolerance) properties against Caenorhabditis elegans, in comparison to a similar, commercially available molecule i.e., 1,5-pentanediol (2). The effective (lower) concentration of 1 significantly showed (28.6%) higher survival percentage of the worms under thermal stress (37 ºC) compared to its higher concentration (25.3%), while similar trends were followed in oxidative stress where (22.2%) higher survival percentage was recorded in comparison to untreated control. The compound 1, however, lacked potential antimicrobial activity, indicating the plausible ramification of the position of OH group in such bioactive molecules. In silico evaluation of these molecules against common as well as unique targets corroborated better antiaging potential of 1 in comparison to that of 2. The results for the first time indicated that the utilization of the endophytic fungi of C. amada could, thus, be a possible source for obtaining non-plant-based bioactive compounds having broader therapeutic applications pertaining to age-related progressions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.