Juvenile myoclonic epilepsy is the most common idiopathic generalized epilepsy, characterized by frequent myoclonic jerks, generalized tonic-clonic seizures and, less commonly, absences. Neuropsychological and, less consistently, anatomical studies have indicated frontal lobe dysfunction in the disease. Given its presumed thalamo–cortical basis, we investigated thalamo–cortical structural connectivity, as measured by diffusion tensor imaging, in a cohort of 28 participants with juvenile myoclonic epilepsy and detected changes in an anterior thalamo–cortical bundle compared with healthy control subjects. We then investigated task-modulated functional connectivity from the anterior thalamic region identified using functional magnetic resonance imaging in a task consistently shown to be impaired in this group, phonemic verbal fluency. We demonstrate an alteration in task-modulated connectivity in a region of frontal cortex directly connected to the thalamus via the same anatomical bundle, and overlapping with the supplementary motor area. Further, we show that the degree of abnormal connectivity is related to disease severity in those with active seizures. By integrating methods examining structural and effective interregional connectivity, these results provide convincing evidence for abnormalities in a specific thalamo–cortical circuit, with reduced structural and task-induced functional connectivity, which may underlie the functional abnormalities in this idiopathic epilepsy.
The long-term pathological effects of chronic epilepsy on normal brain ageing are unknown. Previous clinical and epidemiological studies show progressive cognitive decline in subsets of patients and an increased prevalence of Alzheimer's disease in epilepsy. In a post-mortem series of 138 patients with long-term, mainly drug-resistant epilepsy, we carried out Braak staging for Alzheimer's disease neurofibrillary pathology using tau protein immunohistochemistry. The stages were compared with clinicopathological factors, including seizure history and presence of old traumatic brain injury. Overall, 31% of cases were Braak Stage 0, 36% Stage I/II, 31% Stage III/IV and 2% Stage V/VI. The mean age at death was 56.5 years and correlated with Braak stage (P < 0.001). Analysis of Braak stages within age groups showed a significant increase in mid-Braak stages (III/IV), in middle age (40–65 years) compared with data from an ageing non-epilepsy series (P < 0.01). There was no clear relationship between seizure type (generalized or complex partial), seizure frequency, age of onset and duration of epilepsy with Braak stage although higher Braak stages were noted with focal more than with generalized epilepsy syndromes (P < 0.01). In 30% of patients, there was pathological evidence of traumatic brain injury that was significantly associated with higher Braak stages (P < 0.001). Cerebrovascular disease present in 40.3% and cortical malformations in 11.3% were not significantly associated with Braak stage. Astrocytic-tau protein correlated with the presence of both traumatic brain injury (P < 0.01) and high Braak stage (P < 0.001). Hippocampal sclerosis, identified in 40% (bilateral in 48%), was not associated with higher Braak stages, but asymmetrical patterns of tau protein accumulation within the sclerotic hippocampus were noted. In over half of patients with cognitive decline, the Braak stage was low indicating causes other than Alzheimer's disease pathology. In summary, there is evidence of accelerated brain ageing in severe chronic epilepsy although progression to high Braak stages was infrequent. Traumatic brain injury, but not seizures, was associated with tau protein accumulation in this series. It is likely that Alzheimer's disease pathology is not the sole explanation for cognitive decline associated with epilepsy.
Purpose: Patients with temporal lobe epilepsy (TLE) due to hippocampal sclerosis (HS) often suffer from material-specific memory impairments. The purpose of this study was to use functional magnetic resonance imaging (fMRI) to study the organization of specific memory functions in these patients.Methods: We report 14 patients with unilateral TLE and HS, and 10 controls, performing an fMRI memory paradigm of word, picture, and face encoding.Results: Compared with controls, patients with left TLE demonstrated less left MTL and greater right MTL activation and patients with right TLE demonstrated less right MTL and greater left MTL activation. Correlations between fMRI activation and memory performance revealed greater activation in the damaged left hippocampus to be correlated with better verbal memory performance in left TLE patients and greater right hippocampal activation to be correlated with better nonverbal memory in right TLE patients. Conversely, greater fMRI activation in the contralateral hippocampus correlated with worse memory performance.Conclusions: Our findings suggest that memory function in unilateral TLE is better when it is sustained by activation within the damaged hippocampus and that reorganization to the undamaged MTL is an inefficient process, incapable of preserving memory function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.