In nature, rabies virus (RABV; genus Lyssavirus, family Rhabdoviridae) represents an assemblage of phylogenetic lineages, associated with specific mammalian host species. Although it is generally accepted that RABV evolved originally in bats and further shifted to carnivores, mechanisms of such host shifts are poorly understood, and examples are rarely present in surveillance data. Outbreaks in carnivores caused by a RABV variant, associated with big brown bats, occurred repeatedly during 2001–2009 in the Flagstaff area of Arizona. After each outbreak, extensive control campaigns were undertaken, with no reports of further rabies cases in carnivores for the next several years. However, questions remained whether all outbreaks were caused by a single introduction and further perpetuation of bat RABV in carnivore populations, or each outbreak was caused by an independent introduction of a bat virus. Another question of concern was related to adaptive changes in the RABV genome associated with host shifts. To address these questions, we sequenced and analyzed 66 complete and 20 nearly complete RABV genomes, including those from the Flagstaff area and other similar outbreaks in carnivores, caused by bat RABVs, and representatives of the major RABV lineages circulating in North America and worldwide. Phylogenetic analysis demonstrated that each Flagstaff outbreak was caused by an independent introduction of bat RABV into populations of carnivores. Positive selection analysis confirmed the absence of post-shift changes in RABV genes. In contrast, convergent evolution analysis demonstrated several amino acids in the N, P, G and L proteins, which might be significant for pre-adaptation of bat viruses to cause effective infection in carnivores. The substitution S/T242 in the viral glycoprotein is of particular merit, as a similar substitution was suggested for pathogenicity of Nishigahara RABV strain. Roles of the amino acid changes, detected in our study, require additional investigations, using reverse genetics and other approaches.
To provide molecular and virologic evidence that domestic dog rabies is no longer enzootic to the United States and to identify putative relatives of dog-related rabies viruses (RVs) circulating in other carnivores, we studied RVs associated with recent and historic dog rabies enzootics worldwide. Molecular, phylogenetic, and epizootiologic evidence shows that domestic dog rabies is no longer enzootic to the United States. Nonetheless, our data suggest that independent rabies enzootics are now established in wild terrestrial carnivores (skunks in California and northcentral United States, gray foxes in Texas and Arizona, and mongooses in Puerto Rico), as a consequence of different spillover events from long-term rabies enzootics associated with dogs. These preliminary results highlight the key role of dog RVs and human-dog demographics as operative factors for host shifts and disease reemergence into other important carnivore populations and highlight the need for the elimination of dog-related RVs worldwide.
Two new rabies-related viruses were discovered in Russia during 2002. Viruses were isolated from bats in Eastern Siberia near Baikal Lake and in the western Caucasus Mountains. After preliminary antigenic and genetic characterization, we found that both viruses should be considered as new putative lyssavirus genotypes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.