We have investigated the extraction behavior of the metallic ions Co(II), Fe(III) and Ni(II) as a function of the amount of potassium thiocyanate used as an extracting agent, using the following aqueous two-phase systems (ATPS): PEO + (NH(4))(2)SO(4) + H(2)O, PEO + Li(2)SO(4) + H(2)O, L35 + (NH(4))(2)SO(4) + H(2)O and L35 + (Li)(2)SO(4)+H(2)O. Metal extraction from the salt-rich phase to the polymer-rich phase is affected by the following parameters: amount of added extractant, pH, and the nature of the electrolyte and polymer that forms the ATPS. Maximal extraction percentages were obtained for Co(II) (99.8%), Fe(III) (12.7%) and Ni(II) (3.17%) when the ATPS was composed of PEO1500 + (NH(4))(2)SO(4) + H(2)O containing 1.4 mmol of KSCN at pH 4.0, providing separation factors as high as S(Co, Fe) = 3440 and S(Co, Ni) = 15,300. However, when the same ATPS was used at pH 2.0, the maximal extraction percentages for iron and nickel were 99.5% and 4.34%, respectively, with S(Fe, Ni) equal to 4380. The proposed technique was shown to be efficient in the extraction of Co(II) and Fe(III), with large viability for the selective separation of Co(II) and Fe(III) ions in the presence of Ni(II).
Phase diagrams of aqueous two-phase systems composed of a triblock copolymer (L35) 1900 g • mol -1 , sodium tartarate, sodium citrate, or sodium nitrate were determined at (283.15, 298.15, and 313.15) K. The temperature effect on the position of the binodal curves was not relevant, indicating a small enthalpic contribution associating to the phase segregation. The ability of three salts to induce the formation of the biphasic system with L35 followed the order sodium citrate > sodium tartarate > sodium nitrate. The preference of a salt-inducing phase segregation follows the Hofmeister series.
A new method has been developed for the spectrophotometric determination of p-aminophenol (PAP) in water, paracetamol formulations and human urine samples with a recovery rate between 94.9 and 101%. This method exploits an aqueous two-phase system (ATPS) liquid-liquid extraction technique with the reaction of PAP, sodium nitroprusside and hydroxylamine hydrochloride in pH 12.0, which produces the [Fe(2)(CN)(10)](10-) anion complex that spontaneously concentrates in the top phase of the ATPS ([Formula in text]). The ATPS does not require an organic solvent, which is a safer and cleaner liquid-liquid extraction technique for the determination of PAP. The linear range of detection was from 5.00 to 500 μg kg(-1) (R ≥ 0.9990; n=8) with a coefficient of variation of 2.11% (n=5). The method exhibited a detection limit of 2.40 μg kg(-1) and a quantification limit of 8.00 μg kg(-1). The ATPS method showed a recovery that ranged between 96.4 and 103% for the determination of PAP in natural water and wastewater samples, which was in excellent agreement with the results of the standard 4-aminoantipyrine method that was performed on the same samples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.