A BSTR ACTParathyroid hormone-related protein (PTHrP) is a prohormone that is posttranslationally processed to a family of mature secretory forms, each of which has its own cognate receptor(s) on the cell surface that mediate the actions of PTHrP. In addition to being secreted via the classical secretory pathway and interacting with cell surface receptors in a paracrine͞autocrine fashion, PTHrP appears to be able to enter the nucleus directly following translation and influence cellular events in an ''intracrine'' fashion. In this report, we demonstrate that PTHrP can be targeted to the nucleus in vascular smooth muscle cells, that this nuclear targeting is associated with a striking increase in mitogenesis, that this nuclear effect on proliferation is the diametric opposite of the effects of PTHrP resulting from interaction with cell surface receptors on vascular smooth muscle cells, and that the regions of the PTHrP sequence responsible for this nuclear targeting represent a classical bipartite nuclear localization signal. This report describes the activation of the cell cycle in association with nuclear localization of PTHrP in any cell type. These findings have important implications for the normal physiology of PTHrP in the many tissues which produce it, and suggest that gene delivery of PTHrP or modified variants may be useful in the management of atherosclerotic vascular disease.Parathyroid hormone-related protein (PTHrP) (Fig.
The factors that regulate pancreatic beta cell proliferation are not well defined. In order to explore the role of murine placental lactogen (PL)-I (mPL-I) in islet mass regulation in vivo, we developed transgenic mice in which mPL-I is targeted to the beta cell using the rat insulin II promoter. Rat insulin II-mPL-I mice displayed both fasting and postprandial hypoglycemia (71 and 105 mg/dl, respectively) as compared with normal mice (92 and 129 mg/dl; p < 0.00005 for both). Plasma insulin concentrations were inappropriately elevated, and insulin content in the pancreas was increased 2-fold. Glucose-stimulated insulin secretion by perifused islets was indistinguishable from controls at 7.5, 15, and 20 mM glucose. Beta cell proliferation rates were twice normal (p ؍ 0.0005). This hyperplasia, together with a 20% increase in beta cell size, resulted in a 2-fold increase in islet mass (p ؍ 0.0005) and a 1.45-fold increase in islet number (p ؍ 0.0012). In mice, murine PL-I is a potent islet mitogen, is capable of increasing islet mass, and is associated with hypoglycemia over the long term. It can be targeted to the beta cell using standard gene targeting techniques. Potential exists for beta cell engineering using this strategy.
In the lactating mammary gland, the plasma membrane calcium ATPase2 (PMCA2) transports milk calcium. Its expression is activated in breast cancers, where high tumor levels predict increased mortality. We find that PMCA2 expression correlates with HER2 levels in breast cancers and that PMCA2 interacts with HER2 in specific actin-rich membrane domains. Knocking down PMCA2 increases intracellular calcium, disrupts interactions between HER2 and HSP-90, inhibits HER2 signaling, and results in internalization and degradation of HER2. Manipulating PMCA2 levels regulates the growth of breast cancer cells, and knocking out PMCA2 inhibits the formation of tumors in mouse mammary tumor virus (MMTV)-Neu mice. These data reveal previously unappreciated molecular interactions regulating HER2 localization, membrane retention, and signaling, as well as the ability of HER2 to generate breast tumors, suggesting that interactions between PMCA2 and HER2 may represent therapeutic targets for breast cancer.calcium pumps | ErbB2 | receptor internalization | HSP-90 | epidermal growth factor receptor P lasma membrane calcium ATPases (PMCAs) are a family of ion pumps that transport calcium out of cells and maintain low resting intracellular calcium levels (1-3). PMCA2 (gene symbol Atp2b2) is highly expressed in the apical membrane of mammary epithelial cells only during lactation, where it has been shown to transport calcium into milk (4-6). After weaning, PMCA2 expression rapidly decreases, contributing to the initiation of programmed cell death and mammary gland involution (7,8). PMCA2 is also expressed in breast cancers (8-10), and high levels of tumor PMCA2 expression predict increased mortality in patients (8).Approximately 25-30% of invasive breast cancers overexpress human epidermal growth factor receptor 2 (HER2) as a result of amplification of the ERBB2 kinase gene (11-13), and overexpression of HER2 causes breast tumors in mouse mammary tumor virus (MMTV)-Neu transgenic mice (14). HER2 functions as a heterodimer with other ERBB family members, most commonly pairing with EGFR or human epidermal growth factor receptor 3 (HER3) in breast cancers (11, 13). For reasons that remain poorly understood, in contrast to other ERBB family members, which are internalized and degraded after stimulation, HER2 remains on the cell surface and continues to signal for prolonged periods (12,15).In this study, we describe a previously unrecognized function for PMCA2: supporting active HER2 signaling and HER2-mediated tumor formation. Our data suggest that PMCA2 interacts with HER2 within specific membrane domains and is required for HER2 expression, membrane retention, and signaling.Results PMCA2 and HER2 Are Coexpressed in Breast Cancers. PMCA2 levels correlate with HER2 in breast tumors (8). To further explore potential interactions between PMCA2 and HER2, we analyzed their expression in a previously reported tissue microarray consisting of 652 breast cancers with a median 9 y of clinical follow-up (8, 16). Patients with the highest quartiles of ...
We identified cellular targets of canonical Wnt signaling within the skeleton, which included chondrocytes, osteoblasts, and osteocytes in growing bone, but only osteocytes and chondrocytes in the mature skeleton. Mechanical deformation induced Wnt signaling in osteoblasts in vitro.Introduction: Genetic evidence in mice and humans has implicated the canonical Wnt signaling pathway in the control of skeletal development and bone mass. However, little is known of the details of Wnt signaling in the skeleton in vivo. We used Wnt indicator TOPGAL mice to identify which cells activated this pathway during bone development and in the mature skeleton. Materials and Methods:We examined canonical Wnt signaling during embryonic and neonatal bone development in TOPGAL mice. The TOPGAL transgene consists of a -galactosidase gene driven by a T cell factor (TCF)-catenin responsive promoter so that canonical Wnt activity can be detected by X-gal staining. Expression of Wnt signaling components was examined in primary calvarial cell cultures by RT-PCR. The effect of mechanical deformation on Wnt signaling was examined in primary calvarial cells grown on collagen I and stretched using Flexercell Tension Plus System FX-4000T. Immunohistochemistry was used to examine the localization of -catenin in cartilage, bone, and cultured calvarial cells exposed to physical deformation. Results and Conclusions: Canonical Wnt signaling was active in several cell types in the fetal and neonatal skeleton, including chondrocytes, osteoblasts, and osteocytes. With age, activation of Wnt signaling became less prominent but persisted in chondrocytes and osteocytes. Although osteoblasts in culture expressed many different individual Wnt's and Wnt receptors, the TOPGAL transgene was not active in these cells at baseline. However, Wnt signaling was activated in these cells by physical deformation. Together with the activation of canonical Wnt signaling in osteocytes seen in vivo, these data suggest that Wnt signaling may be involved in the coupling of mechanical force to anabolic activity in the skeleton.
Parathyroid hormone-related protein (PTHrP) is produced by the pancreatic islet. It also has receptors on islet cells, suggesting that it may serve a paracrine or autocrine role within the islet. We have developed transgenic mice, which overexpress PTHrP in the islet through the use of the rat insulin II promoter (RIP). Glucose homeostasis in these mice is markedly abnormal; RIP-PTHrP mice are hypoglycemic in the postprandial and fasting states and display inappropriate hyperinsulinemia. At the end of a 24-hour fast, blood glucose values are 49 mg/dl in RIP-PTHrP mice, as compared to 77 mg/dl in normal littermates; insulin concentrations at this time are 6.3 and 3.9 ng/ml, respectively. Islet perifusion studies failed to demonstrate abnormalities in insulin secretion. In contrast, quantitative islet histomorphometry demonstrates that the total islet number and total islet mass are 2-fold higher in RIPPTHrP mice than in their normal littermates.PTHrP very likely plays a normal physiologic role within the pancreatic islet. This role is most likely paracrine or autocrine. PTHrP appears to regulate insulin secretion either directly or indirectly, through developmental or growth effects on islet mass. PTHrP may have a role as an agent that enhances islet mass and/or enhances insulin secretion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.