Three-dimensional (3D) printing has become broadly available and can be utilized to customize clamping mechanisms in biomechanical experiments. This report will describe our experience using 3D printed clamps to mount soft tissues from different anatomical regions. The feasibility and potential limitations of the technology will be discussed. Tissues were sourced in a fresh condition, including human skin, ligaments and tendons. Standardized clamps and fixtures were 3D printed and used to mount specimens. In quasi-static tensile tests combined with digital image correlation and fatigue trials we characterized the applicability of the clamping technique. Scanning electron microscopy was utilized to evaluate the specimens to assess the integrity of the extracellular matrix following the mechanical tests. 3D printed clamps showed no signs of clamping-related failure during the quasi-static tests, and intact extracellular matrix was found in the clamping area, at the transition clamping area and the central area from where the strain data was obtained. In the fatigue tests, material slippage was low, allowing for cyclic tests beyond 105 cycles. Comparison to other clamping techniques yields that 3D printed clamps ease and expedite specimen handling, are highly adaptable to specimen geometries and ideal for high-standardization and high-throughput experiments in soft tissue biomechanics.
Though it is known that the water content of biological soft tissues alters mechanical properties, little attempt has been made to adjust the tissue water content prior to biomechanical testing as part of standardization procedures. The objective of this study was to examine the effects of altered water content on the macro and micro scale mechanical tissues properties. Human iliotibial band samples were obtained during autopsies to osmotically adapt their water content. Macro mechanical tensile testing of the samples was conducted with digital image correlation, and micro mechanical tests using atomic force microscopy. Analyses were conducted for elastic moduli, tensile strength, and strain at maximum force, and correlations for water content, anthropometric data, and post-mortem interval. Different mechanical properties exist at different water concentrations. Correlations to anthropometric data are more likely to be found at water concentrations close to the native state. These data underline the need for adapting the water content of soft tissues for macro and micro biomechanical experiments to optimize their validity. The osmotic stress protocol provides a feasible and reliable standardization approach to adjust for water content-related differences induced by age at death, post-mortem interval and tissue processing time with known impact on the stress-strain properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.