The effects of postemergence rimsulfuron, metribuzin, and adjuvant combinations on potato crop safety and weed control were evaluated in field studies conducted at the University of Idaho Aberdeen Research and Extension Center in 1999 and 2000. Rimsulfuron at 26 g ai/ha plus metribuzin at 0, 140, or 280 g ai/ha was combined with nonionic surfactant (NIS), crop oil concentrate (COC), or methylated seed oil (MSO) in a 3 by 3 factorial with two controls. Under cool, cloudy conditions in 1999, initial ‘Russet Burbank’ potato injury was greater when metribuzin was included in the tank mixture than when rimsulfuron was applied alone, regardless of adjuvant. Under warmer conditions in 2000, however, adding MSO or COC to the tank mixture caused more injury than adding NIS. Rimsulfuron did not provide acceptable season-long common lambsquarters control in 1999 (76%) or in 2000 (88%), regardless of adjuvant. Rimsulfuron combined with metribuzin at 140 or 280 g/ha provided ≥95% common lambsquarters control both years, regardless of adjuvant. Among adjuvants, using MSO (1999 and 2000) or COC (2000) in the spray mixture improved common lambsquarters control compared with using NIS. Tuber yield and quality were not reduced as a result of metribuzin rate or adjuvant treatments either year compared with the weed-free control.
There has been a recent shift in the prevalence of Potato virus Y (PVY) strains affecting potato with the ordinary strain PVY declining and the recombinant strains PVY and PVY emerging in the United States. Multiple PVY strains are commonly found in potato fields and even in individual plants. Factors contributing to the emergence of the recombinant strains are not well defined but differential aphid transmission of strains from single and mixed infections may play a role. We found that the transmission efficiencies by Myzus persicae, the green peach aphid, of PVY, PVY, and PVY varied depending on the potato cultivar serving as the virus source. Overall transmission efficiency was highest from sources infected with three virus strains, whereas transmission from sources infected with one or two virus strains was not significantly different. Two strains were concomitantly transmitted by individual aphids from many of the mixed-source combinations, especially if PVY was present. Triple-strain infections were not transmitted by any single aphid. PVY was transmitted most efficiently from mixed-strain infection sources. The data do not support the hypothesis that differential transmission of PVY strains by M. persicae is a major contributing factor in the emergence of recombinant PVY strains in the U.S. potato crop.
Potato virus Y (PVY) strains are transmitted by different aphid species in a non‐persistent, non‐circulative manner. Green peach aphid (GPA), Myzus persicae Sulzer, is the most efficient vector in laboratory studies, but potato aphid (PA), Macrosiphum euphorbiae Thomas (both Hemiptera: Aphididae, Macrosiphini), and bird cherry‐oat aphid (BCOA), Rhopalosiphum padi L. (Hemiptera: Aphididae, Aphidini), also contribute to PVY transmission. Studies were conducted with GPA, PA, and BCOA to assess PVY transmission efficiency for various isolates of the same strain. Treatments included three PVY strains (PVYO, PVYN:O, PVYNTN) and two isolates of each strain (Oz and NY090031 for PVYO; Alt and NY090004 for PVYN:O; N4 and NY090029 for PVYNTN), using each of three aphid species as well as a sham inoculation. Virus‐free tissue‐cultured plantlets of potato cv. Russet Burbank were used as virus source and recipient plants. Five weeks post inoculation, recipient plants were tested with quantitative DAS‐ELISA to assess infection percentage and virus titer. ELISA‐positive recipient plants were assayed with RT‐PCR to confirm presence of the expected strains. Transmission efficiency (percentage infection of plants) was highest for GPA, intermediate for BCOA, and lowest for PA. For all aphid species, transmission efficiency did not differ significantly between isolates within each strain. No correlations were found among source plant titer, infection percentage, and recipient plant titer. For both GPA and BCOA, isolates of PVYNTN were transmitted with greatest efficiency followed by isolates of PVYO and PVYN:O, which might help explain the increasing prevalence of necrotic strains in potato‐growing regions. Bird cherry‐oat aphid transmitted PVY with higher efficiency than previously reported, suggesting that this species is more important to PVY epidemiology than has been considered.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.