The highest power conversion efficiencies (PCEs) reported for perovskite solar cells (PSCs) with inverted planar structures are still inferior to those of PSCs with regular structures, mainly because of lower open-circuit voltages (). Here we report a strategy to reduce nonradiative recombination for the inverted devices, based on a simple solution-processed secondary growth technique. This approach produces a wider bandgap top layer and a more n-type perovskite film, which mitigates nonradiative recombination, leading to an increase in by up to 100 millivolts. We achieved a high of 1.21 volts without sacrificing photocurrent, corresponding to a voltage deficit of 0.41 volts at a bandgap of 1.62 electron volts. This improvement led to a stabilized power output approaching 21% at the maximum power point.
Genetic instability of tumor cells often leads to the occurrence of a large number of mutations, and expression of non-synonymous mutations can produce tumor-specific antigens called neoantigens. Neoantigens are highly immunogenic as they are not expressed in normal tissues. They can activate CD4+ and CD8+ T cells to generate immune response and have the potential to become new targets of tumor immunotherapy. The development of bioinformatics technology has accelerated the identification of neoantigens. The combination of different algorithms to identify and predict the affinity of neoantigens to major histocompatibility complexes (MHCs) or the immunogenicity of neoantigens is mainly based on the whole-exome sequencing technology. Tumor vaccines targeting neoantigens mainly include nucleic acid, dendritic cell (DC)-based, tumor cell, and synthetic long peptide (SLP) vaccines. The combination with immune checkpoint inhibition therapy or radiotherapy and chemotherapy might achieve better therapeutic effects. Currently, several clinical trials have demonstrated the safety and efficacy of these vaccines. Further development of sequencing technologies and bioinformatics algorithms, as well as an improvement in our understanding of the mechanisms underlying tumor development, will expand the application of neoantigen vaccines in the future.
Non-coding RNAs do not encode proteins and regulate various oncological processes. They are also important potential cancer diagnostic and prognostic biomarkers. Bioinformatics and translation omics have begun to elucidate the roles and modes of action of the functional peptides encoded by ncRNA. Here, recent advances in long non-coding RNA (lncRNA) and circular RNA (circRNA)-encoded small peptides are compiled and synthesized. We introduce both the computational and analytical methods used to forecast prospective ncRNAs encoding oncologically functional oligopeptides. We also present numerous specific lncRNA and circRNA-encoded proteins and their cancer-promoting or cancer-inhibiting molecular mechanisms. This information may expedite the discovery, development, and optimization of novel and efficacious cancer diagnostic, therapeutic, and prognostic protein-based tools derived from non-coding RNAs. The role of ncRNA-encoding functional peptides has promising application perspectives and potential challenges in cancer research. The aim of this review is to provide a theoretical basis and relevant references, which may promote the discovery of more functional peptides encoded by ncRNAs, and further develop novel anticancer therapeutic targets, as well as diagnostic and prognostic cancer markers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.