The threshold model is a simple but classic model of contagion spreading in complex social systems. To capture the complex nature of social influencing we investigate numerically and analytically the transition in the behavior of threshold-limited cascades in the presence of multiple initiators as the distribution of thresholds is varied between the two extreme cases of identical thresholds and a uniform distribution. We accomplish this by employing a truncated normal distribution of the nodes’ thresholds and observe a non-monotonic change in the cascade size as we vary the standard deviation. Further, for a sufficiently large spread in the threshold distribution, the tipping-point behavior of the social influencing process disappears and is replaced by a smooth crossover governed by the size of initiator set. We demonstrate that for a given size of the initiator set, there is a specific variance of the threshold distribution for which an opinion spreads optimally. Furthermore, in the case of synthetic graphs we show that the spread asymptotically becomes independent of the system size, and that global cascades can arise just by the addition of a single node to the initiator set.
Influence Maximization is a NP-hard problem of selecting the optimal set of influencers in a network. Here, we propose two new approaches to influence maximization based on two very different metrics. The first metric, termed Balanced Index (BI), is fast to compute and assigns top values to two kinds of nodes: those with high resistance to adoption, and those with large out-degree. This is done by linearly combining three properties of a node: its degree, susceptibility to new opinions, and the impact its activation will have on its neighborhood. Controlling the weights between those three terms has a huge impact on performance. The second metric, termed Group Performance Index (GPI), measures performance of each node as an initiator when it is a part of randomly selected initiator set. In each such selection, the score assigned to each teammate is inversely proportional to the number of initiators causing the desired spread. These two metrics are applicable to various cascade models; here we test them on the Linear Threshold Model with fixed and known thresholds. Furthermore, we study the impact of network degree assortativity and threshold distribution on the cascade size for metrics including ours. The results demonstrate our two metrics deliver strong performance for influence maximization.
In clinical outcome studies, analysis has traditionally been performed using patient-level factors, with minor attention given to provider-level features. However, the nature of care coordination and collaboration between caregivers (providers) may also be important in determining patient outcomes. Using data from patients admitted to intensive care units at a large tertiary care hospital, we modeled the caregivers that provided medical service to a specific patient as patient-centric subnetwork embedded within larger caregiver networks of the institute. The caregiver networks were composed of caregivers who treated either a cohort of patients with particular disease or any patient regardless of disease. Our model can generate patient-specific caregiver network features at multiple levels, and we demonstrate that these multilevel network features, in addition to patient-level features, are significant predictors of length of hospital stay and in-hospital mortality.
A simple technique is reported to create 31 and 45 μm thick, graded-index Si films in the form of nanospirals on a Si substrate using a dynamic, oblique angle deposition technique. We show that the success in producing such a thick, nanostructured film without delamination from the Si substrate is primarily due to the nano-porous nature of the film which effectively eliminates the stress generated during growth. Effective refractive indices of 1.9 and 2.1 were extracted from the terahertz time-domain reflectivity data, which correspond to 57% and 51% porosity for the 31 and 45 μm thick films, respectively. The gradient of porosity through the film was modeled to describe quantitatively the terahertz reflectance data in the 0.2-2.0 THz regime.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.