<p><strong>Abstract.</strong> Nowadays, the necessity of heritage documentation is essential for monitoring, maintenance, and understanding needed for conservation. The survey phase has been considerably improved using cutting-edge technologies such as Unmanned Aerial Vehicles (UAV) and Terrestrial Laser Scanners (TLS). Both of these technologies have been applied in heritage documentation individually or combined. Heritage documentation in a post-natural disaster is a situation that requires rapid data acquisition on a hazardous field. On 12th of June 2017 an earthquake (Mw&thinsp;=&thinsp;6.3), south of Lesvos island, Greece occurred, which was devastating for the Vrisa village destroying, among many other buildings the main church. The Greek State decided from the first moment to restore the whole village, which was proclaimed as a “traditional settlement” since 2002, in its original place starting from the church and the school due to the symbolic meaning that those have to a local community. For this purpose, a 3D model of the church was requested by the authorities for damage assessment. In this paper TLS and UAV photogrammetry has been used in an integrated design to rapidly facilitate the acquisition of the whole church, eliminating all possible occlusions. The TLS was exploited for the acquisition of the facades while the UAV was used for the acquisition of the roof. The recent improvement of the post-processing algorithms provided the ability to implement the fusion of TLS and UAV models and deliver an accurate 3D model of the whole church the same day that the survey was conducted.</p>
<p><strong>Abstract.</strong> The aim of this paper is to present the methodology followed and the results obtained by the synergistic exploitation of geo-information methods towards 3D mapping of the impact of the catastrophic earthquake of June 12th 2017 on the traditional settlement of Vrisa on the island of Lesvos, Greece. A campaign took place for collecting: a) more than 150 ground control points using an RTK system, b) more than 20.000 high-resolution terrestrial and aerial images using cameras and Unmanned Aircraft Systems and c) 140 point clouds by a 3D Terrestrial Laser Scanner. The Structure from Motion method has been applied on the high-resolution terrestrial and aerial photographs, for producing accurate and very detailed 3D models of the damaged buildings of the Vrisa settlement. Additionally, two Orthophoto maps and Digital Surface Models have been created, with a spatial resolution of 5&thinsp;cm and 3&thinsp;cm, respectively. The first orthophoto map has been created just one day after the earthquake, while the second one, a month later. In parallel, 3D laser scanning data have been exploited in order to validate the accuracy of the 3D models and the RTK measurements used for the geo-registration of all the above-mentioned datasets. The significant advantages of the proposed methodology are: a) the coverage of large scale areas; b) the production of 3D models having very high spatial resolution and c) the support of post-earthquake management and reconstruction processes of the Vrisa village, since such 3D information can serve all stakeholders, be it national and/or local organizations.</p>
Covering an area of approximately 97 km2 and with a maximum depth of 58 m, Lake Trichonis is the largest and one of the deepest natural lakes in Greece. As such, it constitutes an important ecosystem and freshwater reserve at the regional scale, whose qualitative and quantitative properties ought to be monitored. Depth is a crucial parameter, as it is involved in both qualitative and quantitative monitoring aspects. Thus, the availability of a bathymetric model and a reliable DTM (Digital Terrain Model) of such an inland water body is imperative for almost any systematic observation scenario or ad hoc measurement endeavor. In this context, the purpose of this study is to produce a DTM from the only official cartographic source of relevant information available (dating back approximately 70 years) and evaluate its performance against new, independent, high-accuracy hydroacoustic recordings. The validation procedure involves the use of echosoundings coupled with GPS, and is followed by the production of a bathymetric model for the assessment of the discrepancies between the DTM and the measurements, along with the relevant morphometric analysis. Both the production and validation of the DTM are conducted in a GIS environment. The results indicate substantial discrepancies between the old DTM and contemporary acoustic data. A significant overall deviation of 3.39 ± 5.26 m in absolute bottom elevation differences and 0.00 ± 7.26 m in relative difference residuals (0.00 ± 2.11 m after 2nd polynomial model corrector surface fit) of the 2019 bathymetric dataset with respect to the ~1950 lake DTM and overall morphometry appear to be associated with a combination of tectonics, subsidence and karstic phenomena in the area. These observations could prove useful for the tectonics, geodynamics and seismicity with respect to the broader Corinth Rift region, as well as for environmental management and technical interventions in and around the lake. This dictates the necessity for new, extensive bathymetric measurements in order to produce an updated DTM of Lake Trichonis, reflecting current conditions and tailored to contemporary accuracy standards and state-of-the-art research in various disciplines in and around the lake.
Water is one of life's and nature's most dominant elements, with its presence influencing and controlling the climatic, geological, and biological conditions of an area. Continuous monitoring of subterranean water with the aim of its optimal management has become necessary nowadays. The aspiration of this research is, that the development of “smart” methods for this purpose, will lead to the optimization of the quality of life of the inhabitants of a region, always respecting the environment. The use of geoinformatics methods can contribute to the development of models according to which a network for the logging and control of boreholes and subterranean water will be created, which in turn will lead to smart and direct decision-making concerning their management. In this research, an effort is made to show the contribution of spatial analysis to the design and management of the subterranean water of an area, with the vision of a smart city being the ultimate goal.
Several studies have focused on the ground displacement phenomena in the broader area of the Thessaloniki Plain, Greece. Although there is a general consensus on the diachronic occurrence of subsidence, there have been recent studies that also report considerable uplifts. In order to resolve some of these ambiguities and to further study and monitor the area, new, high-accuracy leveling measurements were conducted during 2018–2020 in the vicinity of the town of Sindos. Findings indicate a total vertical displacement of up to about −15 mm, whereas the continuation of a clear overall subsidence tendency rather than uplift has been verified.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.