Fundamental to our understanding of erosional and transport phenomena in earth-surface dynamics and engineering is knowledge of the conditions under which sediment motion will begin when subjected to turbulent flow. The onset criterion currently in use emphasizes the time-averaged boundary shear stress and therefore is incapable of accounting for the fluctuating forces encountered in turbulent flows. We have validated through laboratory experiments and analytical formulation of the problem a criterion based upon the impulse imparted to a sediment grain. We demonstrate that in addition to the magnitude of the instantaneous turbulent forces applied on a sediment grain, the duration of these turbulent forces is also important in determining the sediment grain's threshold of motion, and that their product, or impulse, is better suited for specifying such conditions.
[1] Better understanding of the role of vegetation in the transport of fluid and pollutants requires improved knowledge of the detailed flow structure within the vegetation. Instead of spatial averaging, this study uses discrete measurements at multiple locations within the canopy to develop velocity and turbulence intensity profiles and observe the changes in the flow characteristics as water travels through a vegetation array simulated by rigid dowels. Velocity data was collected with a one dimensional laser Doppler velocimeter under emergent and submerged flow conditions. The effects of dowel arrangement, density, and roughness were also examined. The results show that the velocity within the vegetation array is constant with depth and the velocity profile is logarithmic above it, however the boundaries are marked by inflection points. The strongest vortices and turbulence intensities can be found there, especially in the region immediately downstream of a dowel. These results support the idea that the flow in the region near the bed and at the top of the dowel array is very unstable leading to the formation of coherent structures and are areas of significant mass and momentum exchange.
[1] A new criterion for the onset of entrainment of coarse sediment grains is presented here. It is hypothesized that not only the magnitude, but also the duration of energetic near bed turbulent events is relevant in predicting grain removal from the bed surface. It is therefore proposed that the product of force and its duration, or impulse, is a more appropriate and universal criterion for identifying conditions for particle dislodgement. This conjecture is investigated utilizing two theoretical models, representative of two modes of entrainment: saltation and rolling. In these models, instantaneous, highly fluctuating turbulent forces are simulated as short-lived pulses of characteristic magnitude and duration, which transfer adequate fluid momentum to the particle, to trigger its entrainment. The analytical solution of the respective equations of motion is employed in deriving representations of threshold conditions in terms of the impulse characteristics. It is shown that hydrodynamic forces of sufficiently high magnitude are capable of entraining a particle only when they last long enough so that their impulse exceeds a critical value. To illustrate further the validity of the critical impulse concept, as well as extend and generalize its application to different entrainment levels of an individual grain, a novel experimental setup is utilized. This setup facilitates observations of angular displacement of a steel mobile particle in air due to electromagnetic pulses of different magnitude and duration. The experimentally obtained conditions for partial or complete entrainment support the concept of a critical impulse.
This paper presents results of several large-eddy simulations ͑LES͒ of turbulent flow in an open channel through staggered arrays of rigid, emergent cylinders, which can be regarded as idealized vegetation. In this study, two cylinder Reynolds numbers, R D = 1 , 340 and R D = 500, and three vegetation densities are considered. The LES of the lowest density and at R D = 1 , 340 corresponds to a recently completed laboratory experiment, the data of which is used to validate the simulations. Fairly good agreement between calculated and measured first-and second-order statistics along measurement profiles is found, confirming the accuracy of the simulations. The high resolution of the simulations enables an explicit calculation of drag forces, decomposed into pressure and friction drag, that are exerted on the cylinders. The effect of the cylinder Reynolds number and the cylinder density on the drag and hence on the flow resistance is quantified and in agreement with previous experimental studies. Turbulence structures are visualized through instantaneous pressure fluctuations, isosurfaces of the Q-criterion and contours of vertical vorticity in horizontal planes. Analysis of velocity time signals and distributions of drag and lift forces over time reveals that flow and turbulence are more influenced by the vegetation density than by the cylinder Reynolds number.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.